WO
Queen Mary

University of London

School of Electronic Engineering and Computer Science

Peer-to-peer update dissemination
in browser-based networked virtual
environments

Yousef Amar

Submitted in partial fulfillment of the requirements

of the Degree of Doctor of Philosophy

2020-04-10

Statement of originality

I, Yousef Amar, confirm that the research included within this thesis is my own work or
that where it has been carried out in collaboration with, or supported by others, that
this is duly acknowledged below and my contribution indicated. Previously published
material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,
and does not to the best of my knowledge break any UK law, infringe any third party’s
copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check
the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree
by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or in-
formation derived from it may be published without the prior written consent of the
author.

/ou . anu./

Yousef Amar
2020-04-10

Details of collaboration and publications:

This thesis was completed with the close advice and support of my supervisor, Dr
Gareth Tyson. The datasets we analysed in §3| could not have been built without the
gracious access/permission of Philipp Lenssen. Deciphering the undocumented historical
iPlane dataset in was only possible through the support of Professor Harsha V.
Madhyastha. A list of publications published during the course of this PhD can be found
in the front matter of this thesis on page [iil

Abstract

Networked Virtual Environments (NVEs) have always imposed strict requirements on
architectures for update dissemination (UD). Clients must maintain views that are as
synchronous and consistent as possible in order to achieve a level of user experience that
is tolerable for the user.

In recent times, the web browser has become a viable platform on which to deploy
these NVEs. Doing so adds another layer of challenges however. There is a distinct need
for systems that adapt to these constraints and exploit the characteristics of this new
context to achieve reliably high consistency between users for a range of use cases.

A promising approach is to carry forward the rich body of past research in peer-to-peer
(P2P) networks and apply this to the problem of UD in NVEs under the constraints of a
web browser. Making NVEs scalable through P2P networks is not a new concept, however
previous work has always been either too specific to a certain kind of NVE, or made
performance trade-offs that especially cannot work in a browser context. Furthermore,
in previous work on P2P NVEs, UD has always taken the backseat compared to object
management and distributed neighbour selection. The evaluation of these UD systems
have as a result been one-dimensional and overly simplifying.

In this work, we begin by surveying past UD solutions and evaluation methodologies.
We then capture NVE, browser, and network constraints, aided by the analysis of a rich
dataset of NVE network traces that we have collected, and draw out key observations
and challenges to develop the requirements for a feasible UD system. From there, we
illustrate the design and implementation of our P2P UD system for NVEs in great de-
tail, augmenting our system with novel architectural insights from the Software-Defined
Networking (SDN) space. Finally, we evaluate our system under a range of workloads,
test environments, and performance metrics to demonstrate that we have overcome these
challenges, as well as compare our method to other existing methods, which we have also
implemented and tested.

We hope that our contributions in research and resources (such as our taxonomies,
NVE analysis, UD system, browser library, workload datasets, and a benchmarking frame-
work) bring more structure as well as research and development opportunities to a rela-
tively niche sub-field.

11

Publications

The following is a list of publications (and one patent), as well as brief summaries, pub-
lished during the course of this PhD. For a list of publications before and after the PhD,
as well as PDFs of all publications, please visit http://yousefamar.com#publications.

2019

Towards Cheap Scalable Browser Multiplayer
In Conference on Games (CoG) IEEE

In this work, we introduce and evaluate a P2P-based method and library that
aims to minimse running costs and development overhead for independent,
multiplayer, browser games.

Zest: REST over ZeroMQ

In Proceedings of the 3rd Workshop on Security, Privacy and Trust in the Internet of
Things, in conjunction with IEFE PERCOM

In this paper we introduce, Zest (REST over ZeroMQ), a middleware tech-
nology in support of an Internet of Things (IoT).

2018

Providing Occupancy as a Service with Databox

In Proceedings of the 1st ACM International Workshop on Smart Cities and Fog Com-
puting (pp. 29-34). ACM

In this paper we present Occupancy-as-a-Service (OaaS) implemented as an
app on Databox.

An Information-Theoretic Approach to Time-Series Data Privacy

In Proceedings of the 1st Workshop on Privacy by Design in Distributed Systems (p. 3).
ACM

111

http://yousefamar.com#publications

In this paper, we present a system for tuning a data consumer’s access to
personal data based on real-time privacy metrics.

Building Accountability into the Internet of Things: The IoT Databox Model
Journal of Reliable Intelligent Environments (pp. 1-17) Springer

This paper outlines the [oT Databox model as a means of making the Internet
of Things (IoT) accountable to individuals.

2017

Balanced Message Distribution in Distributed Message Handling Systems
US Patent (serial number: 15/794440)

This patent describes a combination of methodologies for arriving at near-
optimal message distribution decisions in distributed messaging systems under
specific constraints.

Route-based Authorization and Discovery for Personal Data

In the 11th EuroSys Doctoral Workshop

When faced with systems in which third party components need to advertise
the availability of data they gather, while other such components need to
access it, solutions for delegated authorisation and discovery APIs for inter-
operability are needed. This work explores possible solutions, and converges
on a testable implementation.

2016

Personal Data Management with the Databox: What’s Inside the Box?

In Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking (pp. 49-54)
ACM

A more detailed look at the Databox as it stood; a collection of physical and
cloudhosted software components that provide for an individual data subject

to manage, log and audit access to their data by other parties.

Privacy-Aware Infrastructure for Managing Personal Data

In Proceedings of the 2016 ACM SIGCOMM Conference (pp. 571-572) ACM

A poster abstract giving an overview of Databox systems as they stood with
a stronger focus on arbiter interactions.

v

Contents

1__Introduction| 1
[T Motivationl 1
(1.2 Research contextl 0oL 3
(1.3 Research objectives| 4
(.4 Research contributions L oo)
(L5 Thesis structurel 7

2 Background| 8
RI _Overviewl.

2.2 Centralisation vs decentralisationl 8
[2.3 'The separation of the control and data planes| 10
2.4 The web browser as a platform| 11
[2.4.1 Peer-to-peer vs client-server| 13
25 The NVE context| oo 15
[2.5.1 Acronyms and definitions| 17
[2.5.2 The challenge of preventing cheating in NVEks 18
[2.5.3 Other NVE challenges| 21
[2.5.4 NVE avatar motion mobility traces and their uses| 22
2.6 The underlying network{ 24
[2.6.1 Application-layer multicast|. 24
[2.6.2 Network coordinate systems| 25
2.6.3 Network level of detadll 26
2.7 Overlay networks| 26
[2.7.1 A taxonomy of existing topologies|. 27
[2.7.2 Neighbour selection metrics| 33
2.7.3 Routing over P2P NVEs 34

[2.8.1 Consistency / Staleness|. L. 36
.82 Bandwidthl. oo 37
[2.8.3 Upload/download per node| 38
[2.8.4 Protocol Quality] 38
2.8.0 Delayl 39

[2.8.6 Reliability|o 40
2877 Drift distancelo 40

2.9 Pvaluation workloadsl oo oo 41
2.9.1 Simulation testbeds/ o000 41
[2.9.2 Mobility workloads|o 41

[3 Characterising Networked Virtual Environments| 44
B.1 Overviewl. 44
[3.1.1 Measurement objectives| o000 44

[3.2 Existing datasets| 46
B3 Ourdataset] Lo 47
[3.3.1 Overview of Manyland| 48
[3.3.2 Data collection| 49

B4 Areas and workloadd Lo 52
[3.5 Measuring AOl density], 55
[3.5.1 AOI density due to player activity]. 55
[3.5.2 Hotspots| 60

[3.6 Measuring topology churnl 64
[3.6.1 Session lengthl 64
3.6.2 Idle behaviour oo 66
.63 Motion flowl Lo 72
.64 Crowd behaviour oo 7

[3.7 Measuring cheating behaviour| 00000 83
[3.8 Measuring player reputation|o 89
.81 Vote-based rankl. 89
[3.8.2 Social network metrics| oo o oo 92

[3.9 Measuring device heterogeneity| 101
[3.10 Measuring browser constraints| 104

vi

[3.11 Summary| 108

[4 P2P Update Dissemination| 111
M1 Overviewl. e e 111
1.2 Decentralisation: to what extent?o 00 111
M3 Architecturelo 114
4.4 Routing within our system| L. 115
(4.5 Our algorithml| 118

M.5.1 Distance metricsused oo 120
[4.5.2 Building an appropriate coordinate system| 123
[4.5.3 Computing topologies| 126
1.6 Pre-connection outside of AOI 127
[4.7 Mitigating cheatingl o 128
(4.8 Implementation| 129
[4.8.1 Signalling server|. oL 130
[4.8.2 Supported topologies|o 133
[4.8.3 Client library| o 137
5__Evaluation| 141
Dl Overviewl. 141
[>.1.1 Evaluation questions| 141
[>.2 Setup and methodology|. 144
H.2.1 Ourtestbed oo 144
[5.2.2 Modelling communication between nodes| 147
[>.2.3 Topologies evaluated| 150
Hh.2.4 Workloads evaluated 150
[H.2.5 Performance metrics usedl 153
(5.3 Evaluating scalability|o 156
[>.3.1 Performance against AOI density| 156
[5.3.2 Meeting browser constraints| 161
5.4 Evaluating churn sensitivity] 167
(5.5 Evaluating packet loss resiliencel 171
[>.6 Evaluating cheating mitigation|. 173
[5.6.1 The effectiveness of limiting cheater influence| 174

Vil

[5.6.2 Cheater impact on performance]

[5.7 Summary]

6 Conclusion|

viil

List of Figures

[2.1 |Networked Virtual Environment (NVE)| gameplay screenshots across gen- |
| res from “Counter Strike: Global Oftensive”, “Manyland”, “Diep.i0”, and |
| “Second Lite” respectivelylo oo 16

[2.2 A taxonomy of update dissemination topologies of major P2P architectures |
| « — hybrid [Peer-to-peer (P2P)| with dedicated servers|. 28

[3.1 A set of gameplay screenshots from across difterent Manyland areas, cour- |
| tesy of the official Manyland press kit| 48

(3.2 An empirical cumulative distribution function of total area visitors (|0, |
| 1000] for visualisation)| oo 53

(3.3 Mean |[Area-of-Interest (AOI)| density across areas sampled at ten-minute |
| intervalslo 55

. ean player count across areas sampled at ten-minute intervals. e
3.4 M | t led at t inute intervals. Th |
global avatar count (green) is included to illustrate the proportion of play- |

ers in the two areas ot tocus compared to game-wide]. 56
[3.5 Density plots of player count across areas{. 57
[3.6 |AOI| density versus player count across environments| 58

[3.7 Occupancy heatmaps of the dynamic area with cell sizes of 1x1 (top) and |
| 10x10 (bottom)| 61

3.8 Occupancy heatmaps of the static area with cell sizes of 1x1 (top) and |
| 10x10 (bottom)| 62

[3.9 Density plots of player session lengths across areas, capped at the 90" |
| percentile for readability (overlap of both is purple) 65

£3.10 Empirical cumulative distribution functions limited between |0, 220|m com- |
| PATINE ATCAS| v e e e e e e e e e e 67

[3.11 CDF's of transition probabilities across players for the dynamic (left) and |
| static (right) areas| 70

[3.12 Mean player finite state machines for dynamic (left) and static (right) areas| 71

[3.13 Velocity map of the dynamic area with cell sizes of 1x1 (top) and 10x10 |
| (bottom) where opacity is mapped to speed and colour is mapped to angle| 74

1X

B.14

Velocity map of the static area with cell sizes of 1x1 (top) and 10x10

(bottom) where opacity is mapped to speed and colour is mapped to angle| 75

[3.15 A visualisation of [AOl| radius, viewport, and interaction radius in relation |
| to an avatar and each other L. 78
[3.16 A visualisation of avatar grouping as computed through three separate |
techniques| 79

[3.17 A distribution of the number of groups over time across environments| . . 81
[3.18 Distributions (left) and histograms (right) of groups sizes over time across |
Areas] e 82

[3.19 A histogram of player ranks| 0oL 90
[3.20 A histogram of player account ages| 91
[3.21 A scatterplot of players binned into 100 vertical and horizontal hexagonal |
bins of player rank against player account age with a Generalized Additive |
Model trend line (vred)[. 91

[3.22 Mitt network partitioned by eigenvector centrality| 94
[3.23 Mitt network partitioned by player rank{ 95
[3.24 A scatterplot of players binned into 100 vertical and horizontal hexagonal |
bins of player rank against player eigenvector centrality with a Generalized |
Additive Model trend line (red) o oL 96

[3.25 Mitt network partitioned by age|o 97
[3.26 Scatterplots of players binned into 100 vertical and horizontal hexagonal |
bins of player weighted in-degree (mifts received) against rank (left) and |

age (right)|o 98

[3.27 Mift network partitioned by community / modularity class 99
[3.28 Manyland.com Google analytics as of 2019-12-05 on pages, user activity, |
devices, and retention|.o L 102

[3.29 Manyland.com Google analytics as of 2019-12-05 on user acquisition, ge- |
ography, and timing|. 102

[3.30 Manyland.com Google analytics as of 2019-12-05 on user sessions| 103
[3.31 The WebRTC exchange “in a complicated diagram”™ by MDN| 105
£3.32 Connection establishment time overhead against latency (left) and loss |
ratio (right)| o 106

4.1 Density plots of movement intervals (between all peers) across areas, capped |
at the 90 percentile] 113

4.2 Our high-level architecture listing the roles of the signalling server| 114
4.3 Life cycle of an updatel o000 117
4.4 Our peer network topology computation pipelinef. 120

4.5

A trame from the visualisation of difterent topologies under a synthetic

workload. Link thicknesses correspond to link quality, red links are re-

dundant (ours), and red peers are designated superpeers for superpeer

topologies.| 134
4.6 Three networking topologies of interest between servers (rectangles) and
peers/clients (circles) — client-server model (left), hosted [P2P| (middle),
and full P2P[(right)|. 138
4.7 An example of a computed MS'T topology where peers with better con- |
nections (@ and @) act as supernodes, and with redundancy (@ and @) 139
[>.1 An overview of our evaluation testbed setup| 145
(5.2 A visualisation of the iPlane network before completely connecting (left)
and a corresponding map of known /valid [Point of Presence (PoP)[coordi-
nates (right) 148
(5.3 A breakdown of the synthetic trace payload 152
[>.4 Illustration of position drift, missing peers, and extra peers, from the per- |
spective of the dark blue player and their grey [AOI| 154
[>.5 Mean drift distance distribution across real environment traces; dynamic |
(left) and static (right)| o oL oo 157
[>.6 Mean missing ratio distribution across real environment traces; dynamic |
(left) and static (right)| oo oo 158
[>.7 Mean extra ratio distribution across real environment traces; dynamic |
(left) and static (right)| o o o 158
[>.8 Mean mean drift distance across the high-churn synthetic workload for |
different numbers of players|o 160
(5.9 Mean missing (left) and extra (right) ratio distributions across the high- |
churn synthetic workload| 160
[5.10 Maximum active degree by number of peers over the synthetic workload|. 162
[5.11 Mean upload (left) and download (right) rate distributions across the dy- |
namic environment workload ordered by mean| 164
[5.12 Mean upload (left) and download (right) rate distributions across the static |
environment workload ordered by mean|. 165
[5.13 Mean upload (top) and download (bottom) rates across the synthetic work- |
load for different numbers of players|. 166
[5.14 Proportion of updates lost due to cooldown across dynamic (top) and static |
(bottom) workloads| oo o 168
[5.15 Mean ratio of updates dropped due to cooldown over the synthetic work- |
load for different levels of churnf 170
[>.16 Mean drift distance under a range of artificially induced loss ratios|. . . . 172

x1

[5.17 Ilustration of cheater peer (red) influence on the propagation of updates

from a source peer (blue) in networks across a spectrum from low to high

| cheater influencel 174
[5.18 Mean normalised cheater betweenness measures for difterent cheater prob- |
| abilities across the dynamic (top) and static (bottom) workloads| 176
[5.19 Worst case drift distances for different cheater probabilities across dynamic |
| (top) and static (bottom) workloads|. 180

xii

List of Tables

2.1 Summary of latency and online games from [26] 17
2.2 Acronyms in the VE space] o000 18
[3.1 Statistical summary of player count distributions across environments| . . 57
[3.2 Additional occupancy heatmap information|. 63
[3.3 Statistical summary of idle time distributions across environments| 68
[3.4 Additional velocity map informationl 76

[3.5 Summary of distributions of the number of groups over time across areas| 81

[3.6 Summary of mift network statistics|o 100

(5.1 Summary of evaluation results with best results highlighted green, accept- |

able vellow, and worst red| 143

sures for every topology (rows) and cheater probability (columns) across |

sures for every topology (rows) and cheater probability (columns) across |

[>.4 Table of standard deviations of worst-case drift distances tor every topology |

(rows) and cheater probability (columns) across the dynamic workload| . 181

[>.5 Table of standard deviations of worst-case drift distances tor every topology |

(rows) and cheater probability (columns) across the static workload| . . . 181

xiil

Chapter 1

Introduction

1.1 Motivation

The internet, and the economies it creates, are volatile and unpredictable. Within our
lifetimes, reality has become deeply permeated with digital worlds upon worlds, for better
or for worse. Change at this rate and scale is disruptive — a large part of the population

is older than the internet itself and everything it enabled.

As the internet landscape changes, unprecedented systems and system architectures

can suddenly become possible. At the network level, virtualisation has changed the status

quo in the past decade, in the form of [Software-Defined Networking (SDN)| Taking net-

working functions that were traditionally coupled to physical hardware, and abstracting
them away into software, has enabled a level of flexibility in managing network infras-
tructure that would have been previously mired in complexity. The key tenet of
separating the data plane from the control plane, and logically centralising the latter, has

yet to be applied to many other networking contexts.

In recent years, we have also seen a trend towards edge computing and, more generally,
shifting computation away from servers in datacenters and towards clients. This can
be attributed to many factors, the most prominent being the rise in the capabilities
and ubiquitousness of smartphones and other personal devices. While this makes edge
computing more viable, as a result of these devices the world has seen an explosion in
the quantity of personal data people produce daily, in the past decade alone [68]. This

in turn reinforces this shift through legal, privacy, and latency requirements.

Latency requirements are especially prominent in |Internet of Things (IoT), [Virtuall

[Reality (VR)|, and [Networked Virtual Environment (NVE)| use cases, among others. Ex-

amples of are multiplayer games, which need to achieve a level of synchronization

and consistency that is acceptable to the users or risk detriment to user experience.

At the same time, desktop applications are being eclipsed by web applications to the
point where many can have their needs met completely with just a web browser. Treating
the web browser as an operating system creates its own challenges. Recent standards and
browser developments, such as WebAssembly, WebGL, WebVR, WebRTC, and WebUSB,
have made the browser rife as a deployment platform for interactive applications, net-
worked [VR] and high-end games. However, the default approach is to use a sever-based
model to synchronise clients, which has implications for scalability, performance, and

fault-tolerance.

With this recent push towards client-side processing and decentralisation,
networks are often considered as an approach to decentralising the communication
between clients too. However, in order for networks to be a viable alternative to
client-server architectures for with low latency requirements (such as multiplayer
games), topologies need to optimise for different performance metrics while remain-
ing scalable as the number of peers increases. More specifically, an approach for building

an overlay network for update dissemination is needed.

Our goal is to therefore build a system that enables update dissemination in a
way that can be tuned to different NVE use cases, that can also be used in a web browser
context. We approach this goal under the precept that building topologies for this
use case (the control plane) need not be conflated with update dissemination (the data
plane), and that in fact the logical separation of the two can yield previously untapped

benefits. A viable system like this also yields further high-level benefits:

e The correlation between server costs and number of users would become much
weaker, leveling the playing field for independent developers and small startups, as
it would allow them to build scalable applications without the financial barrier to

entry.

e [P2P] especially in the browser, is very technically complex. Scalable for real-
time applications has not been attempted successfully in the browser at all. En-
capsulating this complexity in libraries and APIs would further the development

barrier even further.

e |P2P| update dissemination has the potential to improve the performance (latency
etc) of online applications especially when the providers cannot afford distributing

servers across continents.

o architectures for real-time applications have the potential to be more fault-
tolerant than traditional client-server architectures, and more resilient to viral spikes

in load, if designed right.

A system like this must also be compared to other systems to show under which
conditions it will outperform them. In order to do this, we must implement a range of ex-
isting solutions and categorically representative solutions alongside our own. While there
are many frameworks for evaluating general-purpose networks, there are virtually
none for our specific use case. A framework for testing and comparing these systems and
topologies would therefore be a valuable contribution to the field, and so we build such
a framework and use it to compare our method with others along the main performance

metrics that are most prevalent in the literature.

1.2 Research context

We focus specifically on update dissemination for in a browser context.
networks for are rare, but exist, normally focusing on object management, which

we explore in the next chapter. Update dissemination in is an even smaller
subset of this literature, despite it arguably being the most important by sheer volume of

network traffic. Doing this under the constraints of browsers is completely unprecedented.

We do think it is important to explore existing techniques however, despite us having
tighter constraints. We explore existing approaches, both structured and unstructured,
in detail in the next chapter. Many of these (especially structured networks based on
IDistributed Hash Tables (DHTs)|) are general-purpose solutions that do not exploit

the rich application-layer data that can be used to improve topologies, such as virtual

avatar positions and areas of interest. Other solutions do take account of this data and
use locality-sensitive hashing (in based approaches) or other techniques such as

Delaunay triangulation over virtual positions to compute an unstructured network.

Often, these approaches reach the extreme on the other end, in that they are static and
suited to very specific use cases, or e.g. genres of games, to eke out better performance
through specialisation at the design stage. Further, these systems often base their results
on oversimplified models of real networks, ignoring factors such as heterogeneous quality
of links between nodes, packet loss, fault-tolerance, and node bandwidth capacities. This
is especially pronounced in the space as the resources available on devices vary much

more significantly than hosts in a datacenter.

Furthermore, there is an unfilled need for scalable systems such as these in the context

of web browsers — a context we map extensively in this thesis. The browser imposes
additional constraints, such as the overhead in creating a connection, and limits to
the number of concurrent connections; practical constraints that theoretical/simulated

previous work does not take into account.

come in all shapes and sizes; from fast-paced [First-Person Shooters (FPSs)|,
to social [Massively Multiplayer Online Games (MMOGs), We focus on developing a
method for computing update dissemination topologies for a range of different[NVEs The

fundamental goal of update dissemination is to give peers a consistent view of the avatars

within their areas of interest. In a perfect world, peers could communicate instantly
with unlimited bandwidth, resulting in perfect consistency. The reality is that network
conditions create imperfect consistency, however as long as the consistency is close enough,

this is acceptable (or not noticeable) to players.

It is very standard that do some level of position interpolation and prediction
in order to increase consistency. This is out of our scope, and can be applied to any
system. Naturally, the predictions are better with less stale inputs. Similarly, cloud-based
decentralisation is out of our scope, as the motivation of our work applies specifically to
the advantages of update dissemination, although throughout this thesis we will
continuously compare different approaches to a standard client-server architecture as a

baseline.

1.3 Research objectives

Our top level goal is to build a system that enables update dissemination in a
way that can be tuned to different [NVE] use cases, and that can be used under the
constraints of a web browser context. We can further decompose this goal into three

parts that roughly correspond to one chapter each, after our background chapter.

1. To capture[NVE] browser, and network requirements for [P2P]Update Dissemination]

(UD)| systems

2. To design and implement a [P2P|[UD] system that meets these requirements

3. To evaluate our implementation and demonstrate that it does indeed meet these

requirements with respect to alternative solutions

These objectives are difficult as existing systems can meet only a small subset of
these requirements. [UD]in is not a very deeply researched topic as is, but the few

4

existing techniques tend to sacrifice versatility in favour of high performance for specific
applications. By focusing on update dissemination in this context, we aim to create
a system that is versatile enough to meet these requirements while still scoring high
on typical performance metrics. Our design is directly driven by the requirements we

capture, making it better suited to meeting these, unlike other approaches.

1.4 Research contributions

This section summarises the major contributions presented in this thesis. Each of the
top-level outcomes map to a content chapter. For a list of papers published over the

course of this PhD, please see the publications listing in the front matter of this thesis.

L
(a) A review of different [NVEs] genres, and models of these in literature
(b) A taxonomy of different update dissemination topologies in literature

(¢) A thorough survey of performance and evaluation metrics for

2. — |Characterising Networked Virtual Environments|

(a) Development and release of bots and crawlers for the collection of rich application-
layer network traces for a specific

(b) Collection and release of several months (still continuously collecting) of such
traces across different genres of environments. These can be used for a wide
range of analytics by the research community, not just in designing net-
works (e.g. mobility patterns, crowd behaviour, anonymised chat logs, social

network analysis)

(¢) Requirements capture for different genres of on the basis of these traces
in the areas of:
e Player activity and density patterns

e Session churn, idle behaviour, motion flow, and crowd behavior (where
we present two novel methods for group detection from mobility

traces)
e Cheating and using reputation metrics to mitigate different forms of cheat-

ing

(d) Discovery and disclosure of [Cross-Site Scripting (XSS)| vulnerabilities and
other exploits within this NVE]

(e) Requirements capture for browsers, devices, and networks

3. §4— [P2P Update Dissemination]

(a) Design and implementation of a update dissemination system tuned for
browser-based IN'V s}

e A novel, extensible approach to neighbour selection is incorporated. Application-
layer metrics such as virtual locality, network conditions, reputation mea-
sures, and longevity, are fused and used to build a semantic coordinate
space

e Configurable guaranteed minimum connectivity is included by design, cre-
ating redundant paths for resilience to churn, loss, and cheating

e Intelligent pre-connecting to peers to effectively mitigate browser con-

straints

e Design and implementation of low-overhead cryptographic solutions to

prevent tampering with forwarded update traffic

e A generalised design that is highly configurable to different deployment
environments and genres of [NVE]
e Game-specific optimisations (such as delta-coding and position interpola-

tion/prediction) are included out of the box for this context

(b) Release of a browser library and signalling server, that supports our system

and a range of other topologies, for developers to actually usdﬂ

L
(a) A framework for the meticulous evaluation of

e Underlay networks and deployment environment constraints are realisti-
cally emulated

e Highly parallel execution for tight experiment turnaround times

e Support for using synthetic and trace datasets (built above) as evaluation
workloads

e Rich statistics are collected to evaluate performance in different dimen-

sions (e.g. scalability, churn sensitivity, loss resilience, cheating mitigation)

e Configurable to different deployment environments (e.g. browser vs general
purpose)
(b) A full evaluation of our system, compared to other systems, using this frame-

work

'https://libfabric.com/

https://libfabric.com/

1.5 Thesis structure

So far, we have described the research objectives we aim to solve at a high level, and
motivated why this is needed. In this section, we briefly lay out the structure of the

remainder of this thesis.

In §2| we review the literature, and explain everything that someone not specialised
in this area would need to know to understand the bigger picture and where our solution
fits in it. Here, we also discuss what other solutions are currently available, as well as by

what metrics these systems can be compared.

We then focus on capturing the constraints and requirements within this context
in §3| To do this, we build a large dataset from an existing [NVE] and make targeted
measurements over this and other collected data. We also run a number of experiments

and analyses to understand browser and network requirements.

With these results, we describe our system design and implementation in §4 Our

design is explicitly guided by our earlier conclusions as well as top-level goals.

Finally, we demonstrate that our system meets these constraints and requirements by
evaluating it in both synthetic as well as real environments, over a range of parameters
and workloads. Further, we show how our system compares against alternative solutions

and solution classes.

We end this thesis with a summary of our work and a conclusion of our contributions

and findings, as well as future work.

We recommend that this thesis is read digitally, with a PDF reader that highlights
links and has navigation key bindings, for example mupdf. We heavily utilise cross-
referencing sections in this document, so it is convenient to be able to click a reference
and jump back when done. The same holds true for glossary terms, citations, URLs,
and figure/table/equation references. Virtually all figures in this document are vector
graphics, meaning they can be zoomed into infinitely; a capability which is lost by printing
this thesis on paper. We hope that our endeavours to make this thesis a smooth read are

effective.

Chapter 2

Background

2.1 Overview

In this chapter we explore and review high-level concepts and literature pertinent to the
research areas of this PhD project. We begin by looking at the history of decentralisation

and the browser as a platform in order to set the scene. Then, we outline the challenges

of Networked Virtual Environments (NVEs)|, and the research that is done in this area,

to frame our context. We examine more detailed underlay and overlay network research
— including presenting our taxonomy of existing overlay network topologies — such that
our contributions can be positioned in this bigger picture of related work. Finally, we end
this chapter with a thorough survey of evaluation metrics and a discussion of evaluation

workloads, to justify our later evaluation setup and methodology.

2.2 Centralisation vs decentralisation

In the sixties, when a computer with the most basic capabilities could fill an entire room,
all computation was done on mainframes. People would connect to these through termi-
nals that did nothing but interface with the mainframes, and jobs would be scheduled
and run on the mainframes with shared resources. Computing resources and performance
were major bottlenecks, and security was barely a concern at this point in time. This
was akin to having processing concentrated server-side with minimal clients interfacing

with the servers.

Once desktop computers started becoming practical and affordable in the seventies,

we saw a shift away from the centralisation of mainframes, and programs were instead run

locally. Once the internet started to gain momentum, it looked much more decentralised
and federated than it does today. In its early days, when IPv4 addresses were thought to
never run out, and NATs were not needed, web pages were being served from the same

machines that requested them.

When Napster was released in 1999, many [Peer-to-peer (P2P)| protocols and networks

followed, and we also started seeing the internet being used for applications such as
VoIP. At the same time, certain web pages were gaining a lot of traction and introducing
information asymmetry on the internet. Websites were, and still are, hosted on dedicated

servers that have the resources to handle larger volumes of traffic.

As servers and storage became cheaper at scale, many web service providers have
adopted the model of server-side rendering, leaving client devices to mostly display static
pages that would be considered simple by today’s standards. Through competition,
client devices and browser quickly caught up in resources and capabilities however, so
modern web apps have shifted back to [Client-Side Rendering (CSR)} through
[Page Applications (SPAs)|and |[Progressive Web Apps (PWAs)| in order to improve user

experience and lower server costs.

More recently, there has been a push to reduce overheads and improve scalability by
attempting to split application logic into microservices and more discrete units of logic
[58]. Server-side deployment has gone from virtual machines, to containers which share
an OS, to lambdas (in a serverless context) which share a runtime [59]. The additional
granularity has the advantage of lowering server costs as you only pay for exactly what

you use.

That being said, each paradigm still requires elaborate and labour-intensive orches-
tration and management of infrastructure at scale. Further, bandwidth costs especially
can have a damning impact on the feasibility of the use cases most relevant to us, as in
the worst cases these variable costs can scale quadratically with respect to the number
of users. We can lower these costs significantly by shifting as much server-side logic as
possible to the clients and at the same time simplify the development overhead using

appropriate abstractions and as all development becomes client-side development.

The current state-of-the-art in serverless computing are Cloudflare Workers [12] which,
in addition to runtime optimisations, run on servers as close to the user as possible. Even
here, the pull of distribution and decentralisation is evident and strong, making a resur-

gence whenever it is possible, simply because the advantages are too large to ignore. To

this day, new developments that utilise distributed technology, such as |Distributed Hash|

[Tables (DHT's)| or blockchains, continue to create systems with advantage in resilience,

privacy, scalability, cost, and more.

2.3 The separation of the control and data planes

The Separation of Concerns is an effective philosophy to follow in engineering. In the past

decade, |[Software-Defined Networking (SDN)| has transformed networking from the simple

premise of separating the data plane from the control plane, and logically centralising the
latter. Taking networking functions that were traditionally coupled to physical hardware,
and abstracting them away into software, has enabled a level of flexibility in managing

network infrastructure that would have been previously mired in complexity.

Virtualisation as a concept is hardly new of course and has always been prevalent
in the cloud computing space especially. Before [SDN], [Storage Area Networks (SANs)|

were abstracting away the storage layer to create software-defined storage. The same

philosophy has never truly been applied to protocols, simply because most of these
were for use cases such as file sharing, where any sort of centralisation creates intractable
points of failure, censorship, or takedown. These also did not have the problem of the
control plane being coupled to physical hardware, and these networks were simple enough

that the control plane could be completely distributed and built into the protocol itself.

Early networks were not without their problems however. When unstructured,
gossip-like protocols used to be prevalent [31], information would propagate through po-
tentially disconnected networks through different forms of flooding. These protocols could
not make strong guarantees on the availability of data. This changed once structured
protocols and became more common and their design could indeed make stronger
guarantees. Besides the fact that these protocols generally assume heterogeneous net-
works — a problem we discuss in the context of in more detail in
— their control plane is also logically distributed across all nodes, through routing tables

that each node maintains.

When we start looking at the use case however, we draw the critical insight
that there is no reason for the control plane to be distributed at all, and to have to deal
with all the challenges that brings. Control messages would make up a negligible amount
of network traffic next to the data plane, i.e. in-game state dissemination. Many systems
try to distribute everything for the sheer sake of distribution and being able to boast
a completely distributed system, when in fact centralising the brains of topology
computation can even be a competitive advantage, as hiding that logic server-side as a

“trade secret” allows hosts to monetise these networks.

In[SDN]terms, we can treat peers as forwarding devices and the game server as an[SDN|
controller. Bringing this approach to the [NVE] context is promising uncharted territory

and a central theme throughout our work.

10

2.4 The web browser as a platform

The furthest reaches of the “edge” can include smartphones, PCs; |[Internet of Things (IoT)|

hubs, even embedded devices. Edge computing deployments will only take advantage of
a subset of these however, as the heterogeneity between these devices includes runtime
environments. There is however a runtime environment that has reached extensive device
coverage: the web browser. Even headless devices can often still run browsers in a
headless mode, or run Google Chrome’s V8 engine, which powers Node.js for server-side

JavaScript.

The value in browser dominance has been widely recognised. As of today, Google
Chrome continues to hold the majority market share on the battlefield of the browser wars
[122, [121]. At the same time, browsers (at least the one adhering to modern standards)
are becoming more and more capable. It has gotten to the point where a browser is able
to replace most, if not all, equivalent desktop applications. Google’s Chrome OS goes as
far as extending the Chrome browser to become an operating system in itself, with web

apps replacing desktop apps.

With users spending the majority of their computing time in the browser, this is not
a surprising development, and with browsers building cross-platform APIs for applica-
tions that require lower-level hardware access (such as WebGL, WebVR, and recently,
WebUSB), soon there will be very little that cannot be done within the framework of a
browser. Indeed, this gives developers a different way of thinking about software devel-

opment that is more dynamic, standards-driven, and OS-agnostic.

From the other side, web development has also changed to adapt to this shifting
environment. With most users worldwide browsing the web through smartphones [123],
especially in developing countries where a smartphone is a much smaller investment
for connectivity, a “mobile-first” approach to web design has been widely adopted by
developers and modern web frameworks. The standards have shifted to reflect this too,

for example through the CSS3 standard with media queries and similar.

Meanwhile, as devices have been getting more powerful, software design patterns
have changed to reflect that. [SPAg and more generally, [CSR] has become prevalent and
standard, limiting the back-end to |Representational State Transfer (REST)| APIs and

minimising interaction with servers. Web frameworks that enable this, such as React,

Angular, Vue.js have soared in popularity [72] and front-end employers now usually expect

familiarity with one or more of these frameworks.

This also means a greater emphasis on client-side security, the brunt of which is
handled by web standards and, by extension, browser vendors. APIs such as

11 |

Security Policy (CSP)| are available to developers to prevent [Cross-Site Scripting (XSS)

and attacks in the same class or similar.

Web apps have also infiltrated the desktop space. This was originally through frame-
works such NW_js (previously node-webkit) and Electron, but has now become a standard
with [PWAsl [PWAS also allow web apps to become mobile apps, a feat which was pre-
viously only possible by wrapping your web app in a native WebView object, or porting

a web app to an equivalent of that with software such as Cordova or PhoneGap.

introduce a whole new way of thinking about and writing web apps, that employ service
workers to cache resources and enable apps to be usable offline too. Popular apps are
already secretly web apps, and it is not inconceivable that the majority of desktop and

mobile apps will be the same in the future.

Earlier we have explored the serverless paradigm, where the trend in cloud computing
is tending towards smaller, more granular microservices with shared overheads. This
trend has strong parallels at the client-side. The aforementioned shrinkage in server-side
processing, and bare [REST| APIs that map closely to [Create, Read, Update, and Delete]
operations on databases, go hand in hand with the trends we have discussed in

this section.

The critical issue here is that while the back-end has been getting leaner, the front-end
has seen a lot of bloat and frustration by developers — the rate at which new front-end
JavaScript frameworks have been spawning is impossible for most to keep up with and
causing a lot of fragmentation. Meanwhile, the very concept of intuitively does not
mesh well with sane design practices employed when creating microservices, such as the

Separation of Concerns or the Single Responsibility Principle.

Despite advances in serverless computing and similar areas, many application providers
still rely on older technology however and are locked in to legacy architecture due to high
technical debt. The transition to cheaper and more efficient architectures is therefore
slow. As it stands, the standard approach for deploying a web app is to rent a
[Private Server (VPS)| often with one of the big cloud providers such as
[Services (AWS)| Most of these have tools for handling scaling and load balancing out of

the box and host from big datacenters in well served locations.

A quarter of a century ago, the web was largely made up of static pages. With the
advent of PHP and similar, server-side processing spawned a large range of new web app
functionality. To this day, some degree of server-side processing is all but expected. PHP
continues to dominate at 79% use by all websites with a known server-side programming
language, while static files sit at 2.1% [135].

12

Today, large scale web application providers employ a multitude of optimisations in

order to keep their service performant. The use of [Content Delivery Networks (CDNs)|

is an example of one such optimisation, where web application providers may deploy or
rent caching proxy servers that are geographically closer to their users in order to deliver
resources such as static assets to them quicker. Some web application providers, especially
those active in areas with low latency requirements such as real-time multiplayer games,

go as far as operating private networks [100, (101} [102].

2.4.1 Peer-to-peer vs client-server

The most common approach to supporting multiuser virtual environments is a client-
server model, where one or more authoritative servers maintain communication between
clients. This holds true for both browser and non-browser games. This is usually (at
least at first) the least complex solution and fits well within existing internet architecture
and paradigms. The server can be fully authoritative, handling all logic and simulation
(e.g. the physics engine), and the clients act as dumb terminals responsible only for
sending keyboard and mouse events to the server and rendering the environment. This
is usually the preferred model for slower environments that also want to make cheating,

by manipulating the game state client-side, impossible.

On the other end of the spectrum are servers that are only responsible for forwarding
messages between players to synchronise state. Clients handle all of their own computa-
tion, and only inform the server of state changes such as avatar positions. This is much
less secure in general as a client can manipulate the client’s state in many different ways
(e.g. by disabling physics engine collisions or spoofing their positions etc) and therefore

additional client-side security is needed.

This raises the question: why forward this data through a central server in the first
place? If clients could communicate with each other directly [P2P]in a scalable manner, the
application provider could forgo servers almost entirely and associated costs. The same
challenges as above are prevalent in [P2Pfnetworked environments, as peers communicate

with other peers directly, and there is no authoritative server to validate states.

The potential of architectures for game networking has always been recognised,
however the obvious main challenge is scaling — for every additional user, the number of
connections to naively keep all users connected goes up quadratically. That being said,
if this challenge can be overcome, architectures have the potential to lower costs
for game developers and provide a faster, more reliable service to the users. Historically,

developers that have recognised the potential and attempted to overcome these challenges

13

have given up due to the architectural [86] and development [97] complexity.

The web browser as a target platform for modern games has been unpopular due to
its limitations, for example lack of multithreading support for a single page. In recent
times, developers have been deploying less and less to the browser [42, 43]. However, as
modern HTML5 APIs such as WebVR, WebGL, and WebAssembly are beginning to see
widespread support in browsers and devices, there is an opportunity for independent game
developers to rediscover the browser as a serious target for deployment. As independent
developers are more limited when it comes to labour and resources, many shy away from
large-scale, real-time multiplayer game development. We know that there is a strong
demand however, as for example small browser multiplayer games called “io games” (as

they use the .io top-level domain) have seen a meteoric rise in popularity.

Despite this, rather than deal with financial and latency challenges, many developers
opt to populate their games with fake bots to make them seem multiplayer, when in many
cases they are actually completely offline. While this phenomenon has been noticed in
the past by players [103, 73], we have independently verified it by monitoring network
traffic (or rather, lack thereof) through Wireshark while running popular io games such
as hole.ioﬂ and paper.ioﬂ. In fact, simply disconnecting from the internet mid-game, and
observing that other players magically continue to move, is evidence against the game

developers’ claims that they do not employ the use of bots [134].

In the past, there have been many non-browser games that employ peer-to-peer (P2P)
communication. As most clients/peers tend to be behind NATSs, and port-forwarding is
often a non-trivial ask of players, these games rely on techniques such as UDP hole
punching, or supplement communication with intermediate servers. For the purpose of
our research, low-level logistical challenges in setting up connections are out of scope.
These challenges are all but solved, and wherever it is not possible to establish a direct

connection between two peers, workarounds with proxies or relay servers exist.

Client-server |Virtual Environments (VEs)|often have a notion of “rooms” or distinct

zones, where the players within are connected to each other, but not to players in other
rooms. In some [VEg, different servers can host the same areas for different groups of
people, to limit the number of people one one server at a time. This started in 1997
with Ultima Online calling these parallel universe-like servers “shards” to match in-game
lore. This is also why the term “shards” is used to describe horizontal partitioning in

databases and some distributed systems.

This same concept of disjoint rooms/shards can also map to architectures. In

'https://hole-io.com/
’https://paper-io.com/

14

https://hole-io.com/
https://paper-io.com/

many use cases, such as [First-Person Shooters (FPSs)|, only a small group of players need

to be connected, and one peer in a group of peers is designated “host” and acts as a de
facto authoritative server. This limits the server costs of the game provider to simply
acting as a lobby/directory for finding these rooms/groups, but at the same time, the
number of players that a host can support is more limited than a standalone server. This
is a critical limitation when it comes to implementing the same for games with many

players that have been recently becoming more popular, such as the Battle Royale or

[Massively Multiplayer Online Game (MMOG)| genres, which we aim to address.

2.5 The NVE context

The different web app paradigms we touched on in the previous section are all worthy
of detailed research in themselves, and depend very much on the application in question.
For example, social media platforms may need their different functionalities split up in
different ways where standard [CSR] and [REST] simply are not enough. These require-
ments literally drive the development of the currently most popular front-end framework,
Facebook’s React, and others like it.

Meanwhile, online media-services providers like Netflix, that serve a large volume
of static data, instead optimise through compression and replication. In these cases,

infrastructure is more important than page load times for example.

Minimising latency is however becoming a much more prominent focus than through-

put. Aside established areas like financial trading, we are seeing emerging technology with

critical low latency requirements, such as [Virtual Reality (VR)| and some use cases

such as self-driving vehicles. To meet these requirements are solutions at the protocol-
level (e.g. HTTP/2) as well as infrastructure-level (e.g. 5G and satellite constellation

networks).

Throughout this thesis, we look at one class of use cases that is on the highest end of
the latency requirements spectrum: real-time interactive applications, such as multiplayer
games and other virtual environments. Other use cases such as collaborative editing

platforms pose similar, though less pronounced, challenges.

15

Figure 2.1: gameplay screenshots across genres from “Counter Strike: Global Of-
fensive”, “Manyland”, “Diep.io”, and “Second Life” respectively

Figure 2.1 shows gameplay screenshots we took from a range of NVEg| including one
from Manyland (top right) which we later examine, as well as Second Life (bottom right)
which is commonly the target of [NVE] research. We focus on this area because it is an

extreme case that amplifies all the challenges with other use cases. This is because:

e Latency requirements are very high compared to other use cases
e Users/connections are volatile and ephemeral
e Server-side logic is usually monolithic and complicated (e.g. physics simulations)

e Because of this, costs are much more significant and are difficult to cut down through

porting to e.g. a architecture. This increases the developer barrier to entry

e There are strong incentives for bad behaviour (e.g. spoofing game state) so client-

side processing cannot be trusted

e Interaction between users can be innumerable and simultaneous

Different genres can have significantly stricter or laxer requirements

Fundamentally, the goal of networking users in an is to synchronise their views

with as little lag as possible consistently. Many have investigated player latency tolerance

16

’ Model ‘ Perspective ‘ Example Genres ‘ Sensitivity ‘ Thresholds ‘

Avatar First Person | FPS, Racing High 100 milliseconds
Third Person | Sports, RPG Medium 500 milliseconds
Omnipresent | Varies RTS, Sim Low 1000 milliseconds

Table 2.1: Summary of latency and online games from [26]

in the past; table shows a summary of these acceptable latency thresholds from one

such work [26] (with some variation depending on the exact game). These challenges

are most evident for fast-paced multiplayer games, such as [FPSs| [Role-Playing Games|
(RPGs), as well as some [Real-Time Strategy (RTS)| games, and generally speaking, any

latency above 500ms is unacceptable.

This area is especially challenging because the development of the architecture of the
internet was not driven with this use case in mind. It is therefore important to drop
all assumptions from the start and consider different network architectures and systems

when searching for a solution.

2.5.1 Acronyms and definitions

Within this field of research, there are also a number of commonly used terms and

acronyms, especially in a context. Here, we list the most common of these.

When referring to virtual environments with many interacting users, such as[MMOGs|
the literature uses scattered terminology. In this work, we use the all-encompassing term
[VE] or NVE] if the context requires that we differentiate this from a non-networked [VE]
Table lists other terminology used in the literature.

Throughout this work, we may refer to the players in an as players, avatars,
peers, nodes, clients, or hosts interchangeably. We disambiguate in cases where they do
not mean the same thing (e.g. where a physical host might host multiple peers or avatars)
but what these terms refer to is usually the same thing. When they do not, this is usually
clear from the context (e.g. where a client in a client-server context is not a peer, or where

player refers to a human user as opposed to their avatar).

The area around an avatar in a virtual environment is commonly called the [Area-of-

IInterest (AOI)| [118, 85] in contemporary literature. In earlier work this has also been

referred to as an awareness area [80], aura [51), Domain of Interest [105], and aura nimbus
[6]. The act of limiting the information that individual players have access to based on
their , for reasons of increasing scalability and/or decreasing cheating, is referred to
as [Interest Management (IM)| [6, |105].

17

Table 2.2: Acronyms in the VE space

Acronym | Expansion

VE Virtual Environment

VW Virtual World

DVE Distributed Virtual Environment
NVE Networked Virtual Environment
CVE Collaborative Virtual Environment
MMVE Massively MultiUser Virtual Environment
SVW Social Virtual World

DIA Distributed Interactive Application
DIS Distributed Interactive Simulation
MMG Massively Multiplayer Game
MMOG Massively Multiplayer Online Game

is generally divided into spatial techniques where players move across a continuous
world and is computed dynamically, and regional techniques where the can be
split into discrete zones that players can move between. In this work, we focus primarily

on spatial techniques, as they are a more general form of the latter.

2.5.2 The challenge of preventing cheating in NVEs

A challenge that comes up again and again in literature is how to deal with malicious
behaviour. In the subset of this body of research, malicious behaviour usually mani-
fests itself in the form of cheating in order to gain an advantage in-game. This challenge

must be addressed as it is often one of the main arguments against a [P2P| architecture

for NVESl

It is important to note that some kinds of cheating will exist irrespective of the
architecture. Gauthierdickey et al. [47] have organised the different types of cheating
into a useful taxonomy. These types can be split into four layers: game, application,

protocol (which the authors focus on), and network.

Game-layer cheats are where players break the rules of a game. An example they
give in a later paper [46] is looking at someone else’s hand in poker, but examples
may include taking advantage of unintended glitches, broken game mechanics/design,
or players colluding. This also includes “boosting” or “win trading” where higher-level
accounts in a competitive game intentionally lose against lower-level accounts (that either

they own themselves, or a friend, or somebody who paid them) in order to level them

18

up. These are usually combated either through patching broken mechanics or some form
of behavioural analysis coupled with banning cheaters. This kind of cheating is largely
irrelevant here because it is dependent on game design and will persist regardless of the

type of architecture.

Network-level cheats (e.g. denial-of-service attacks) are relevant only in that
networks expose the IP addresses of individual players, which makes them a target, as
opposed to the game server. Protocols for anonymity (be it onion routing or otherwise)
are not worth the overhead in this context. For the most part, this is an acceptable

downside, and modern routers have built-in measures against many of these attacks.

Application-layer cheating, where players modify or augment their game client, can
also pose problems in architecture-agnostic ways. There is a whole menagerie of
different kinds of cheats that can be done in this manner. Common kind are “aimbots”
or “trigger bots” in where a player may use an external program or modified client
to improve or perfect their aim, giving them an unfair advantage. Similarly, creating
macros to trigger clicks and key presses at inhuman speeds is common. Some are quite
advanced at still seeming human, creating an arms-race between cheating and cheating

detection, even utilising machine-learning approaches.

Another common kind of application-layer cheating is “world hacking” or “maphacks”
where clients have full knowledge of the game environment and can remove objects that
make the game more challenging, such as fog-of-war in RTS| games. This extends to
removing visual elements, such as particle effects or camera shake (e.g. gun recoil) to

4

make the game easier. A subset of this is the “wallhack” where cheaters modify their
clients such that they can see other players through walls to anticipate them. While this
is a problem in any architecture, it is more difficult to solve in systems because there
is no authoritative source that can withhold information from a player based on what
they can or cannot see. Even with distributed authority, peers can misuse this in ways
they could not have under an authoritative server, and it requires additional systems for

checking.

Gauthierdickey et al. describe protocol-level cheats in overarching categories, but these
boil down to spoofing, modifying, suppressing, delaying, or forwarding packets. For
example, creating artificial lag by using a “lag switch” or “tapping” to delays packets,
which can for example allow players to slow down their position updates in order to
teleport or fast-forward from the other players’ perspectives. This can be done with a
physical device, or through software that fills a lot of bandwidth at opportune moments.
There are software and hardware approaches to combating this [127], and games might

disconnect you if you lag too much, however sometimes the lag is legitimate. More

19

advanced methods use firewall or router rules for traffic shaping and a cheater will adjust
limits on both bandwidth and latency to stay relevant to a network while still having

a considerable advantage over other players.

Along the same line, packets may be delayed for “look-ahead” cheating, where a
cheater will wait to see what other players do first before committing to their own action.
This can be mitigated through different synchronous and asynchronous lockstep

protocols at the cost of latency.

Cheaters can also disconnect right before they are about to lose such that the loss is
not registered. More elaborate methods of cheating are modifying the sent updates (e.g.
by modifying timestamps), sending different updates to different players, or colluding
with players by forwarding them packets that are outside of their [AOI]

There is a lot of notable general-purpose, anti-cheat software that in many cases will
scan the client device’s memory to determine if they are running known cheat programs, in
addition to trying to detect third-party or unsigned code. This software has seen backlash
by privacy advocates and in cases where players were banned based on false positives.
Valve’s Anti-Cheat would also scan players’ hard disk drives, and was rumoured to receive

browsing history [108].

Other anti-cheat measures may include client obfuscation, which only slows modifica-
tions down but does not prevent it entirely, or human moderation / spectators policing
a game. Even when players are banned by account, IP, or other means, it is possible to

circumvent that, so cheating will always be an ongoing battle.

All that being said, fundamentally, the difference in systems is that there is no
authoritative server that can validate state updates or behaviour, so the peers must do

so themselves. This can create a lot of client-side complexity depending on the game.

This is not limited to either. Any that distributes authority and may rely
on voting or majority consensus, which opens these system up to Sybil attacks, where
individuals try to gain control of a network by creating many fake identities [35]. This is
often mitigated by making it more difficult to create these identities, or otherwise making
it prohibitively expensive to gain control (e.g. proof of work or proof of stake in blockchain

networks).

IDH'T's| all suffer from this problem if a bad actor manages to spread a lot of fake nodes
throughout the keyspace. Some try to mitigate this through blacklists, but it is
an open problem. It is also possible to compromise a [DHT| with fewer nodes, provided
they are all clustered near each other in the keyspace. This is harder to do as it requires

bruteforcing to compute the required hashes. 12P’s implementation of Kademlia tries to

20

mitigate this by appending a date timestamp to the hashes used in the distance functionﬁ.
Thus the keyspace is “rotated” daily, meaning an attacker would have to bruteforce new

hashes daily in order to have a set that are close together.

Systems for making a network more resilient to these kinds of attacks do exist
[19, [120] including ones that utilise social network information to do so [92, (95, 109, 30,
24]. This leads us to the idea that homogenising centrality within a network such that
no single node is too central is likewise a mitigation. This is something we incorporate

into our solutions discussed in chapter [

2.5.3 Other NVE challenges

Avatars are not the only thing that need to be synchronised in a [VE] Other objects,
especially those that need to physically interact with others in a deterministic way, need
to be as well. Physical objects, subject to the simulation of the physics engine, need to

have a consistent view for all players. This holds true for as well as client-server

VES

Often, a single peer is made responsible for an object, simulates any physics or be-
haviour for it on their end authoritatively (although other peers can do the same and
synchronise with the authoritative peer for that object periodically). Simple|Object Man-

lagement (OM)| schemes will have the peer that spawned an object manage it, however

some objects may not necessarily have an “owner” and they might persist after the user
has moved away, entering the of other users. All of this is in the scope of [OM] and
has been researched thoroughly throughout the past two decades, much more so than
|Update Dissemination (UD)|

On the topic of persistence, a question that is often tackled is how to handle per-
sistence of game objects and changes to the environment. There have been extensive
surveys on the work in this space [49]. In a client-server architecture, the server, which
must necessarily always be active in order for the game to be playable, can simply store
persistent game objects in a database. If the game comes preloaded with common game
assets, this can be as simple as storing object IDs and locations, or deltas from the initial

state.

In a |P2P| architecture however, the peers must store this information somehow. It is
not enough to have the peers responsible for a change store the information relating to

that change, as once they are offline, nobody can know about it or query that data. Nor

Shttps://geti2p.net/en/docs/how/network-database#threat

21

https://geti2p.net/en/docs/how/network-database#threat

is it enough to have peers synchronise their local database of game object states (not to
mention that this does not scale at all). For example, if peer A made changes that peer
B saw, then peer A went offline, peer C can still see those changes as long as B is still
around. However, if both A and B go offline, and C makes changes to the same area/data

later, we have a conflict.

There are some workarounds to avoiding problems like these, however these are pre-
scriptive to game design. For example, in the nature of these changes and how they are
stored (e.g. [Conflict-free Replicated Data Types (CRDTs)[119]). Alternatively, game-

layer constraints can be used, for example an object/area “ownership” mechanic that

dictates that the peer that is the owner needs to be online for an area to be editable or
even enterable, and making them the authoritative source on the state of the persistent

objects they manage.

Nonetheless, the problem of persistence is tangential to our focus, and can generally
be solved entirely separately through various distributed storage systems optimised
for replication and search, such as IPFS [5], CFS (which uses Chord and is connected
to the same group that developed it) [29], or even BitTorrent in theory, especially since
magnet links / infohashes (in conjunction with using a for tracking seeders) allow

content-based addressing of stored data.

2.5.4 NVE avatar motion mobility traces and their uses

Mobility traces in the context of are logs of avatar motion over time. We use these
later to both drive the design of our system, as well as evaluate it. Research on mo-
bility in is rich and varied. These are often used in evaluating network architectures
whose performance are affected by mobility. The most common type of evaluation work-
loads are synthetic ones. Simply having avatars move in random directions is however

too simplistic. The best approaches try to simulate realistic mobility as much as possible.

A myriad of mobility models have been published with some more well-known than
others. Itzel et al. attempt to classify some of theses based on a set of characteristics [67].
Most of these are based on mobility traces from the social Second Life |91} 93, 8]
with some based on the [Massively Multiplayer Online Role-Playing Game (MMORPG)|
World of Warcraft [142] and in one case the Quake II [126]. There are also tools for

generating mobility data from a laundry list of these [1].

The most prevalent mobility model in the literature by far is the [Random Waypoint|
[Model (RWP)|which originates from the [Mobile Ad hoc Network (MANET)| space [71].

In it, nodes pick a random waypoint, move towards it at a random (within a set range)

22

constant speed, and pause for a random amount of time before repeating the process.
There have been improvements over this model that make it more realistic, which we
discuss in this section, however this model on its own is more realistic that a simple
random walks, or random direction model. Further, it is argued that artificial mobility
models like these will never be as realistic as models based on real traces [67] and that
using real traces on their own is also not ideal, as they offer less control over various

parameters and may not generalise to other [VE] types and game genres.

One such parameter is the number of avatars in an area. We note that an analysis of
data collected from Second Life by Varvello et al. [133] showed that the distribution of
players across areas if very skewed. 30% of Second Life Regions are consistently empty,
45% consistently have 5 or less avatars, and only 5% of Regions reach 30 concurrent
avatars as a maximum. It is not uncommon that players concentrate around hotspots or
popular areas in social MMOGg| in which case traces from just these popular areas are
more than sufficient for evaluating models.

One prominent mobility model is Blue Banana [91] that treats players as a state
machine with three states: halted, exploring, and traveling. The transition probabilities
between these states were derived from Second Life mobility traces. At each state, a

player moves differently.

This model was used to generate synthetic data to evaluate [32]. They also generated
data based on “action game” mobility (as opposed to “social virtual world”) from a

soccer /football game dataset, to cover different scenarios.

The main issue with mobility models such as these is that they ignore higher-level
behaviour, such as avatars moving in unison, or clustering in hotspots in a social setting.
For games such as FPSs, players on the same team may cluster while avoiding enemies.

Often this kind of nuance will affect the ultimate ideal P2P overlay quite significantly.

Other [9] generate data from traces based on a specific game, such as Quake III, that
adhere very closely to real game traces [10]. To do this, they go one step further and have
up to 32 bots interacting on maps and performing pathfinding over waypoints connected
in a Voronoi diagram (this is very typical for FPS AI). They then follow probabilistic
models for entering fights, staying at waypoints, or leaving waypoints. This is of course
difficult to generalise to other game types, let alone games of the same type, but gives

realistic results.

pSense [118] strikes a balance between these two extremes as they simulate player
motion based on two models. The first is basic random motion, where players move in a

random direction with a probability that this direction can change each simulation step.

23

The second introduces “hotspots” where players perform random motion around hotspots
and randomly move from one hotspot to another. The first spreads players out uniformly
across the world, while the latter clusters players around these hotspots and the paths

between them, which is closer to reality in many cases.

The advantage with mobility models is that they allow us to scale up the number of
simulated players to stress-test our systems at the cost of realism. They should be used
in conjunction with real mobility traces wherever possible in order to not fall into the
trap of oversimplified simulations. Research on mobility in virtual environments is rich

and varied.

2.6 The underlying network

2.6.1 Application-layer multicast

It is important to note that our discourse is solely with regards to [Application-Layer|
[Multicast (ALM)l Multicast (or indeed cast) is abstract at the level of the nodes

in the various overlay networks, and the traversal through the underlying physical net-

works is unknown, manifesting itself indirectly only when we take node-to-node network

measurements into account. That is what makes an overlay network by definition.

We draw the distinction between this and IP multicast (note that UDP can use
multicast addressing) other multicasting at lower layers. Some previous work relies on
this kind of multicast, especially in the area of MANETS|, where the smartphones are

connected in a Wi-Fi Direct or Bluetooth mesh. This will likely gain momentum as

location-based [Augmented Reality (AR)| games become more popular, but is for the

most part outside of our scope, except that there is some overlap in the literature with
simulations for evaluating these systems (e.g. human mobility can simulated in similar
ways to avatar mobility with the Random Waypoint Model etc, which we discuss in
§2.5.4]).

Within the [ALM] context, we also draw the distinction between multicast groups
based on connections (e.g. [P2P| “rooms” in Diablo) and multicast groups further
abstracted (e.g. [Internet Relay Chat (IRC)|channels — while users within a channel chat
only with each other, all traffic goes through the server). in the context of our

work refers to the former.

24

2.6.2 Network coordinate systems

In the design of internet applications, it is immeasurably useful to be able to model
and predict point-to-point network conditions. These models are needed as it is usually
impractical to continuously have every node in a network ping every other node in a
network to understand these network conditions. Oftentimes it is not even possible to do
so, or a latency measurement is a precursor to routing, and making that measurement

itself a significant overhead.

INetwork Coordinate Systems (NCSs)|seek to model networks in a way that is useful

for prediction and other purposes. These usually focus on latency between nodes. Among
Vivaldi [2§] is indubitably the most widely used, primarily because it is very easy
to implement, can be distributed, and gives good results. It models the network as a
spring system, where the latencies correspond to a spring’s resting length. This idea
is often used in data visualisation when rendering force-directed graphs — Hooke’s law
(which describes the behaviour of springs) is applied to edges and Coulomb’s law (which

describes the behaviour of charged particles) is applied to nodes.

Other solve some of the limitations of Vivaldi at the cost of complexity. For
example, Pharos [22] has better accuracy than Vivaldi by using two separate overlays
with two separate sets of coordinates for long and short link predictions. Meanwhile,

Phoenix [23] solves triangle inequality violations by using a matrix factorisation model.

Other include Global Network Positioning [106], which instead uses “land-
marks” to allowing hosts to triangulate their position by pinging at least three, among
many others that have been extensively surveyed in the past [34]. There has also been a
lot of surrounding research, for example on the dimensionality analysis of these coordi-
nate systems. Vivaldi empirically demonstrates that going from two to three dimensions
gives only marginal improvements, and even less beyond three, likely due to the fact that
latencies can be strongly correlated with physical distance, and the physical internet is
mostly two to three dimensional. Others have studied the effects of spikes and outliers
on the stability of an[NCS| and how they can be made more stable by essentially putting

latency measurements through a low-pass filter [44].

There are however other methods that do not rely on continuous sampling, such
as MIT’s King [55], which piggybacks off of DNS infrastructure, and iPlane [94] with
predictions based on measurements from known vantage points. The author of iPlane

has also released a log of these measurements, which we use to model our networks in
chapter

25

2.6.3 Network level of detail

Many researchers have had the idea of attenuating the frequency or granularity of updates
for peers that are further or less important, instead of simply communicating with all
[AO]| neighbours equally. For example, Kawahara et al. split peers into “active” and
“latent” with the latter being updated at a lower frequency [77]. Similar schemes to this
followed [20]. On a similar vein, Kenny et al. dynamically adjust transmission rate based
on network conditions [83]. Fibocast adjusts the update rate of a peer dynamically based
on a Fibonacci sequence and the distance (in hops) another peer is from them [70]. This

can have a tangible effect on topology evaluation metrics.

We coin the term [Network Level of Detail (NLOD)| based on the analogous concept in

computer graphics, [Level of Detail (LOD)|, where 2D sprites / 3D models may be rendered

at different resolutions or complexities respectively based on how far away they are from
the camera. We touched on this briefly earlier when discussing quadtrees/octrees, as

these are ideal data structures for storing [LOD] data in.

There are other rendering optimisations, such as not rendering occluded geometry,
or geometry that is outside of the player’s field of view, and there are indeed network
equivalents to this [7]. It makes sense after all that a player would not need any (or
fewer) position updates from another player who is behind them and they cannot see.
The challenge here is to communicate changes in a player’s field of view in time to receive

these updates.
Some [NLOD| methods even consider social proximity in addition to physical (virtual)

proximity [56]. Visual information sent to a player can range from low definition to very
high definition based on this combined metric. The intuition behind this is that players

care more about high-fidelity data from players they are socially close to.

techniques are not as widely researched as general topologies, and are
usually included as an afterthought. Part of the problem is that these techniques are
prescriptive to game design and can be difficult to generalise. This is an area we explore
further in chapter [4

2.7 Overlay networks
So far, we have discussed background information that frames the context of our work.

As outlined in §I.3] one of the primary objectives of our work is to design a overlay

network topology optimising for specific use cases and deployment environments. In this

26

section, we discuss related work then critique where it falls short, to motivate the need
for further work. We also discuss neighbour selection metrics as well as routing in a

context, to better paint a picture of where the challenges and our focus lie.

2.7.1 A taxonomy of existing topologies

Existing work has been categorised into structured and unstructured (137, |49]. Gen-
erally, structured approaches utilise or similar distributed data structures, while
unstructured approaches connect peers based on factors such as [VE]| positions. We focus
on unstructured systems as our contributions lie in using factors such as these to build

more optimal topologies.

To elaborate, literature focuses on architectures for different purposes. One
common purpose is[OM], where the question is which peer should manage a set of virtual
objects, or which peer should be responsible for a particular region. For purposes like
this, it is trivial to assign peers and objects IDs and map them to a[DHT] Derivatives of
this that take account of object and avatar locality perform better. These still use[DHTSH,
but with locality-preserving hashes, usually with range-query support |17, 131].

These architectures also require a means of [UD] To do so efficiently, previous work
explores different methods of neighbour selection based on semantic distance between
peers. Other methods look at network distance between peers, but in any case, updates
propagate through a sparser network than the naive completely connected variant. Given
a set of peers and information on these peers, we aim to design an algorithm for building
a peer network topology that optimises for the metrics discussed in §5.2.5

A myriad of approaches to the different facets of distributing exist in the lit-
erature. [UD] which we focus on in this work, is much more niche. Usually the more
well-known systems focus on , and pick obvious/default techniques for handling the

side. Survey papers on systems for generally ignore this side too because
it is so rarely explored. [UD]itself is not a term that is as widely used as [[M] and and

the method is usually indirectly implied.

27

8¢

Scribe

Chord \
Kademlia \@
Tapestry |

Pastry [116)

VSM
21 } Pastry-based
S-VON Varvello (09) [132
RAVE * é\forocaﬁ Manycraft ‘
Delaunay OneSim

Solipsis
kmng VON

7‘ Tree Vorogame
pSense \
CAN DHT AOI w/ quadrants_<QuON
Carlini * Kavalionak
Varvello (07) \ Donnybrook [@
Richerzhagen |114

Kawahara & Matsumoto

* .
Badumna P2P UD Topologies Colyseus

Bezerra * Superpeers
Timura
Hyms *
N-Trees

Figure 2.2: A taxonomy of update dissemination topologies of major P2P architectures
* — hybrid [P2P] with dedicated servers

Kiwano Divereal |

Buyukkaya HybridEart

Ricci

i

Figure presents a taxonomy of the [UD]topologies. This includes the major archi-
tectures/protocols in this area, but also some lesser-known work. These can generally be
split into four high-level categories according to what the method in question is based
on. These categories are [DHT] [AOI] Superpeers, and Delaunay.

For methods that have been named, we refer to these by their name. For those that
have not, we refer to them by the surname of the first author of the associated publication.
Citations to these publications are linked in figure — throughout this chapter we will
refer to them by their names in figure as opposed to citation number.

We also note that, even though these publications range across the past two decades
(with a couple even earlier), the specificity of this area has the consequence that it is
dominated by around a dozen research groups. We therefore raise this caveat as an
additional point when considering the categorisation, as some methods are by the same

authors or authors associated with them in some way.

We now examine these four categories and any points of discordance therein.

2.7.1.1 DHT-based

[DHT}based architectures are very popular and hardly limited to our research context.
Their power becomes evident especially in distributed storage and search of data over

n nodes, as this data can be found in O(logn) hops. Freenetﬁ, its successor Gnutellaﬂ,
BitTorrentf (for distributed tracking) all make use of DHTg

This class of topologies is what [VE] literature will classify as structured [P2P] and
while there is a strong prevalence of / preference for unstructured approaches, it is still
important to consider these. The “big four” publications in this space were Chord [124],
Pastry [116], Tapestry |140], and CAN [111].

Chord’s architecture is what most people think of when imagining [DHTs Node IDs
and keys are hashed to create identifiers such that they map to the same space and are
arranged in a ring. Each node is responsible for the storing the values for the keys closest
to it. Each node also maintains routing information for the nodes 2¢ hops away from it,
for values of i from 0 until where 2° wraps around the ring, in a “finger table”. Thus, any

node can reach any other node in on average O(logn) hops with n nodes.

Practically, Kademlia [99] has also seen expansive use. It is similar to Chord, except

the distance between two nodes with identifiers a and b respectively is a ® b, as opposed

4https://freenetproject.org
Shttps://web.archive.org/web/20080525005017 /http://www.gnutella.com/
Shttp://www.bittorrent.org/

29

https://freenetproject.org
https://web.archive.org/web/20080525005017/http://www.gnutella.com/
http://www.bittorrent.org/

to Chord’s (b — a) mod 2". This has the useful mathematical characteristic of being
commutative (the distance between nodes a and b is the same as the distance between
b and a) which means a node is more likely to receive a lookup message from one in
its routing table. Kademlia exploits this by coupling routing table updates to lookups,

which improves overall efficiency.

CAN does not use the same ring layout, instead peers are mapped onto an n-dimensional
virtual coordinate space. Every time a new peer joins, the position it maps to is split
between it and the peer previously responsible for that area. The original paper [111]
explains this intuitively in two dimensions (like a simpler form of quadtrees). Beyond
this, keys and values are mapped to the same space and distributed among the peers just

as with any other DHT-based system.

Pastry and Tapestry are very similar in that they form prefix trees. Each node holds
the routing information for peers that have incrementally more prefix digits in common.
For identifiers of length [, the first set of peers share the first [—1 digits in their identifiers,
the second set [— 2, and so on, up to a set of peers that have identifiers with no common
prefix of any length. The result of this is that peers have more connections to other
peers with identifiers that start the same way, and that a peer can reach any other in a

predictable way by routing down the prefix tree.

The differences between Pastry and Tapestry are minor — the underlying topologies
are the same, but Pastry mainly also performs object replication. Scribe is a pub/sub
system build on Pastry, which exploits the underlying architecture to create multicast
trees through which messages can be propagated to any peer who subscribes to a relevant
topic. Scribe’s fault tolerance is coupled with Pastry’s object replication, since if the root
node of a topic goes offline, there are still backup root nodes for that topic. It is a stretch
to call Scribe a based topology however, since it only really uses a (Pastry)
to build multicast trees, so if it were used for the data would not be pushed through
the [DHT itself.

Carlini additionally maps Virtual Nodes over a [DHT] such that peers in a [VE] can
manage any number of these and they can be passed around for load balancing. They
also allocate “backup” virtual nodes that are run on authoritative servers to mitigate

cheating.

Both Carlini and Varvello (07) rely on locality-preserving hashes for their and
rely on the range query support of these systems in order to query for peers within a
certain [AO]] These are especially useful for the countless number of instances where
were used for [OM], as having objects map closest to the peers that are closer to

them in the virtual space is an embarrassingly obvious use of this.

30

2.7.1.2 AOI-based

As mentioned before, there is a clearly exploitable characteristic of [VEs} the locality of
peers in the virtual space correlates strongly with the communication requirements of
a peer at any given point in time. More specifically, peers are interested in receiving
updates from nodes within their area of interest. For most systems, it therefore makes
more sense that a node communicates directly with nodes within its [AOI] as opposed to,

for example, its n nearest neighbours.

Before we explore the various [AOI}based methods, it is important to note that many
of these are prescriptive — they either imply that the application behaves a certain way,
or they require it. The most common instance of this is in prescribing how are
defined. This is difficult to generalise (sometimes making a method limited to a type of
— or even a single — game). We maintain that generalisable mechanisms should not

be prescriptive of game design, rather the opposite should be true.

We therefore reduce [AOI}based topologies to the same type even if they introduce
different ways of building dynamic [AOIs Similarly, that are based on rectangu-
lar /hexagonal /quadtree/Voronoi cells, rather than circles/spheres with a set radius, all
count as [AObased. These different schemes have been surveyed extensively [13].

Solipsis [80, 38] and related work by the same researchers completely connect peers
within an [AO]] Kavalionak, Colyseus, and Donnybrook do the same, as they focus more
on other aspects of the architecture, such as[OM] VON, one of the most well-know
systems for , as well as other previous work by the same authors [62], make some
improvements by using dynamic with connection limits, but fundamentally peers
are connected within an [AOI§ The same holds true for Vorogame.

pSense peers additionally connect to four nodes outside of their [AO]I|in each quadrant,
but the primary purpose of these sensor nodes is to detect new incoming nodes as the
peer’s avatar moves, and is not related to [UD] Some networks, such as Richerzhagen,
are [AOI}lbased, but explore different dissemination protocols, such as different kinds of
flooding (e.g. probabilistic flooding) even though the overlay network topologies are the

same. We explore this further in later chapters.

2.7.1.3 Superpeer-based

Unlike dedicated servers in a datacenter, peers can exhibit a lot of heterogeneity in
available resources and bandwidth. Superficially, it makes sense that more powerful

peers should have a higher centrality in a network, and handle a greater share of

31

forwarding or management. Indeed, many famous applications, such as KaZaA or
pre-Microsoft Skype use superpeers, even if they might call them by different names.
When it comes to performance, and in some cases fault-tolerance and integrity, literature
has shown that a superpeer architecture is superior to a pure one [138].

Architectures like S-VON select superpeers based on capacity, stability, and trustwor-
thiness. S-VON also uses an[NCS|for selecting relays. Similarly, HYMS selects superpeers
to manage spatial cells based on the CPU, memory, and bandwidth of a peer. HYMS ad-
ditionally incorporates replication on authoritative servers, which is common with these
hybrid approaches to address bad actors in the network and cheating. Other systems
try peer specialisations based on their resources (memory peers, visualisation peers, and

connectivity peers) [20].

These superpeer architectures result in tree structures, usually coupled with some sort
of zoning (rectangular, hexagonal, etc). Where these methods differ is how they select
they zone, and how they select a superpeer responsible for a zone. Often, are
used for superpeer selection, for example in limura “Zoned Federation” with rectangular
zones, Badumna with dynamic [AOIs, and VSM with Voronoi cells. with a good
hashing function are a simple way to ensure that the load is evenly spread. As a matter
of fact, MOPAR, Chen, and Hampel each use Pastry as a DHT with hexagonal zoning.

Hampel additionally takes into account peer resources.

Other methods, such as N-Trees, are similar to CAN, and couple superpeer selection
and zoning much more tightly. N-Trees are like quadtrees (2D) or octrees (3D) but for
N dimensions. Once an N-dimensional cell exceeds a certain capacity, it is split into
2N cells, and so on. This is a powerful tool in computer graphics when e.g. rendering
a heightmap — one can have different levels corresponding to each node in a tree, such
that a node is an average of all of its children. Then, different parts of the heightmap can
be rendered with different levels of detail, based on distance from the camera. This can
likewise be applied to a superpeer network, where when a cell reaches capacity, a peer

becomes a parent to the other peers in that cell and it is split.

Many superpeer architectures are not fully and make use of authoritative servers
for replication, cheating mitigation, reliability, and other purposes, not to mention boot-
strapping. These hybrid systems are marked with asterisks in figure In fact RAVE
and Bezzerra describe techniques for distribution of clients across servers, and are not
P2P| at all, but were included as these techniques are analogous to distributing peers
across superpeers. There are many general hybrid approaches that rely on centralised
servers and simply use networks to offload some traffic [69], however these are largely

out of the scope of this thesis.

32

2.7.1.4 Delaunay triangulation-based

The fourth type of prevalent topologies are those based on Delaunay triangulation;
an old and very well known triangulation algorithm. The graph created by Delaunay
triangulation is the dual graph of that created by Voronoi tessellation. It is easy to
visualise this intuitively in two dimensions, as the “cells” in a Voronoi diagram of a set
of points are simply the area within which any additional points would be closest (for
some definition of “close” — usually Euclidean distance) to the Voronoi point of that cell.
Delaunay Triangulation, being the dual of a Voronoi diagram, therefore results in even
triangles, avoiding slivers, unlike other tessellation methods, which is why it is especially
useful for graphical use cases. An important point to note, which we will revisit later
with our own approach, is that a Euclidean minimum spanning tree is a subgraph of a

Delaunay triangulation.

Work like Varvello (09) connects nodes in a straightforward Delaunay network, how-
ever other work adds to this. For example, Kiwano, which has been practically applied
several times, instead found that the 3'® power graph of a standard Delaunay graph
provides a better performance trade-off. Buyukkaya (which uses Voronoi cells for
extends Delaunay triangulation to avoid the rapid “flipping” of edges when a peer is right

at the threshold of a location where that would happen if they moved back and forth.

Vorocast additionally creates a spanning tree within an and makes sure that
updates disseminated down these trees do not reach the same child twice, as might
happen with general flooding. While this may reduce traffic, we argue that it detracts

from the advantages of having redundant paths, including reliability and validation.

Ricci (work from the same group as Carlini previously) uses yet another routing
heuristic within the same topology: compass routing, which has been used in the past
in creating spanning trees for [2]. While this can in theory cut down on latency,
it can also raise the worst case, in situations where a packet goes down a dead end for

example.

2.7.2 Neighbour selection metrics

So far, most of the systems we have discussed incorporate some notion of semantic dis-
tance between peers and peers will select or be assigned neighbours based on some selec-
tion scheme that takes these distances into account. This is ordinarily the virtual position
between the avatars of said peers, although some architectures may take network distance

into account in some shape or form. Considering network distance is more prevalent in

33

superpeer selection or similar, such as the use of for relay selection in S-VON [63].
We discuss in more detail in

Sometimes geographic distance is used instead, either as an approximation of network

distance, or because geographic distance and virtual distance literally overlap (think
location-based games like Ingressﬂ or Pokémon GOED.

Superpeer selection based on the resources of peers implicitly affects the topology of
a network. While these selection schemes cannot be reduced to a selection “metric” per
se, peer resources can be a factor in neighbour selection, giving peers more “gravity” in

spatial schemes, or a higher likelihood of being connected to in probabilistic schemes.

There is no reason why other metrics cannot or should not be used in spatial schemes
however. For example, a recent survey on socially-aware [P2P| systems has shows how
social metrics can augment and improve search efficiency due to homophily, as well as

other benefits (including trust-based defences against malicious peers).

Elaborate trust and reputation management systems exist for [64] that
can also be incorporated into semantic distance measures, providing protection against
malicious behaviour for free at the topological level. We explore this idea in more detail
in chapter

Other work [56] has achieved performance improvements through limiting the avatar
details transmitted from peer to peer based on their social proximity, from the assumption
that players are less interested in the appearance of avatars they are not friends with in
a social [VE] The benefits of incorporating these kinds of metrics can therefore have

performance benefits in addition to combating malicious behaviour.

2.7.3 Routing over P2P NVEs

In many cases, topology and routing are strongly coupled. For example, once DHT]
routing tables have been constructed, the obvious routing scheme is to send packets to
the peer with the hash closest to the target. There is no real overlay network per se since

pairwise links are connectionless.

This might not always be so straightforward however. After a[P2P]topology has been
constructed, there can be multiple possible routes from a source to a target, and the

optimal route can change over time depending on many different conditions.

We have already touched on methods that route messages differently within an [AO]]

"https://en.wikipedia.org/wiki/Ingress_(video_game)
Shttps://en.wikipedia.org/wiki/Pok%C3%A9mon_Go

34

https://en.wikipedia.org/wiki/Ingress_(video_game)
https://en.wikipedia.org/wiki/Pok%C3%A9mon_Go

beyond simple shortest-path routing or flooding approaches — recall the Delaunay-based
topologies such as Vorocast, which creates spanning trees with in an [AOI] and avoids
children getting the same update twice via different routes, or compass routing in Ricci.
The list of different routing protocols is endless, many of which take locality into account,
such as greedy forwarding, face routing, and other geographic routing protocols. These
protocols have been extensively surveyed in the past [125]. is however, by definition,
not single-path, so many of these strategies are not applicable, and flooding must instead
be used, which offers far less flexibility. Fundamentally, this is more of a load balancing
problem (think backpressure routing) than it is a routing problem. This is also why we
believe that it is doubly important to consider network conditions, and not just virtual

positions, when constructing[P2P|topologies. We revisit this in §4.4]in our design chapter.

Generally speaking, different schemes all try to optimise for metrics such as consis-
tency (we discuss this in more detail in the next section) which ultimately depends on
the latency between peers, but most systems only do this indirectly with their neigh-
bour selection methods. Even knowing latencies between peers is not enough, since naive
shortest-path routing will naturally lead to traffic concentrating at nodes with higher
capacities, leading to congestion, which will in turn lower performance. Because it takes
time to query latencies, all measurements are necessarily stale, which leads to the flocking

behaviour oscillating. This is however a well-known problem with many solutions [113].

The main difference between load balancing across servers versus peers, is the inher-
ent heterogeneity of peers. Some rudimentary structured load balancing schemes
attempt to achieve better performance by classifying nodes into “heavy” and “light”
peers [110]. This is too far removed from the fundamental goal of dynamically minimis-
ing latency, and it can be argued that looking at latency alone will indirectly signal other

factors such as congestion, which we explore.

An additional difficulty comes from the fact that there can potentially be secondary
goals, such as redundancy through sending the same message via multiple paths simul-
taneously (as with flooding) to combat packet loss or malicious peers. Routing such as
in Vorocast falls incredibly short when it comes to meeting these kinds of goals. This is

also a consideration we take into account when designing our solutions.

2.8 Evaluation metrics

Previous work has sought to evaluate the quality of solutions in various ways. Un-
fortunately, this area (even at the level of general-purpose [P2P]) does not have as much

35

research activity as, say, computer vision and/or machine learning research with well
established benchmarks and datasets for evaluation. That being said, there is a gen-
eral pattern to how these systems are evaluated. These usually boil down to a series of

quality-of-service indicators. Here we briefly discuss the most significant ones.

2.8.1 Consistency / Staleness

Schiele et al. [117] laid out the requirements of and consistency was second
only to distribution. Consistency is probably the measure that is most prevalent in the
literature in one form or another. The oldest instance of this that we could find was a
definition of consistency from 1999 [33] where an absolute consistency requires that all
peers see the exact same information at the same time. This is impossible since there will
always be network latency and we are limited by the speed of light, but any divergence

from this ideal is defined as inconsistency.

Existing work [132] also measures quality of experience via inconsistency. However,
they define this as the fraction of missing/incorrect information within an avatar’s ,
for example avatars having outdated coordinates. In other words, whether or not a peer
is inconsistent is binary, and the full metric is a ratio of inconsistent to consistent. They

also measure inconsistency duration; how long an avatar’s state is inconsistent.

Other solutions [9] set a time threshold, for example 150ms (in practice this is depen-
dent on the kind of game) and any updates that pass this threshold are considered stale.
The quality of a network depends on having a low proportion of stale updates. Itzel et

al. [66] call this inconsistency tolerance.

Richerzhagen define staleness on a per-peer basis — the time elapsed since an update
has been received from a peer. This is plotted against [AO]| radius. This metric has
limited utility however as it combines delay as well as the general update frequency
for any given node. It might not necessarily affect user experience so drastically as most

games will incorporate some level of position interpolation/prediction.

In work by Kawahara and Matsumoto [77, 98], as well as VON, “consistency” instead
refers to topology consistency. It is defined as the ratio of correctly known [AOI| neighbours
per peer (with the global consistency at any given point in time being the mean of peer
consistency). In other words, if a peer has a neighbour list of a, b, ¢,d when it should be
a,b, c,e, that is a consistency of 0.75. They plot this against the velocity of avatars for
various [AO]|radii. This is less useful as a metric for comparison of different topologies
(especially where there is a server with global knowledge coordinating) because it will

naturally be very similar for all topologies. It is more useful for determining ideal [AO]]

36

radii with respect to in-game player velocities for a system.

Finally, to confuse terms more, other significant work [70] define the subtly different
“neighborship consistency” as the ratio of known [AO]| neighbours to actual [AO]| neigh-
bours. Systems like VON, which send updates to all [AOI] neighbours directly, will always
have a neighborship consistency of 1.0. However, Vorocast, Fibocast, and any topology
that involves peers within an[AO]| forwarding to each other, can have a lower neighborship
consistency. In [70] this is plotted against the number of nodes in the network, however
it is conceivable that this can be plotted against different [AO]| radii or shapes. This is

again limited in utility for the same reasons as above.

Metrics such as these rely on having “ground truth” data for the timing of avatar
position updates and are therefore best suited to simulations from traces or synthetic

data where one has global knowledge.

2.8.2 Bandwidth

It is not uncommon for P2P network evaluations to consider bandwidth and/or individual
peer upload/download volume and rates |118,9]. Naive P2P approaches have peer band-
width requirements that scale quadratically, therefore it is important that well-designed

approaches mitigate this. As such this is one of the more obvious metrics to consider.

A model of peer upload capacity has been built from BitTorrent and speed test
datasets [9]. Models like these become outdated quickly however as bandwidth grows
worldwide. It is much more important to consider how traffic scales with the number of

players, and how it is distributed across players.

pSense bandwidth evaluations select 100 random nodes and traffic (in and out) per
node (max and average) over time. More importantly, they plot per-player bandwidth
against average players in vision range. Results like these are important as some topolo-
gies (e.g. with superpeers) inherently put more load on certain peers, which can in turn
create congestion at specific nodes. This is especially critical as individual peers have
much more limited available bandwidth (especially upload) when compared to dedicated
game servers in a datacenter. A simulation where peer bandwidth capacity can simply

increase with the network size indefinitely is not realistic.

Vorocast similarly considers bandwidth per number of peers in the network, but like
many other systems, does not take packet loss, latency, or other physical network char-

acteristics into account.

37

2.8.3 Upload/download per node

On a similar vein to bandwidth usage and capacity requirements, examining the upload
and download of nodes in a network is another obvious and common evaluation
method. It is most useful to look at distributions of these against the number of nodes
in a network, however some work has used this to justify parameters of their systems,
for example radius, by investigating how upload/download change for different
radii [114].

Crucially, serious evaluations will avoid basing quality judgements on averages of
these, as these distributions can include far outliers across nodes (such as in superpeer
networks where some nodes may handle much more traffic relatively) and even spikes in
upload/download for the same node. A such, these are generally plotted as box plots
[114], or in the case of VON (a system with dynamic , separately for the average

and the maximum [61].

2.8.4 Protocol Quality

pSense [118], considered a typical example of such solutions [137], describe a metrics
they call “Protocol Quality” (PQ). They split the vision range around an avatar into two
parts; a small radius for direct interactions (e.g. talking or fighting), and the remaining
vision range for less important interactions. Anything outside the vision range has no
effect on PQ.

Within the smaller interaction range, the PQ between two avatars is the “Position
Age” — the time between a when a position update has been sent by one avatar and
received by another. As pSense evaluations do not consider inter-peer latencies and other
factors, the unit of this metric is simulation rounds. In our vocabulary, this is equivalent

to number of hops.

Outside of the interaction range, they take the Euclidean distance between both
avatars and normalise it such that it maps linearly to the range between interaction
radius and vision radius. In other words, 1 at the interaction radius, and 0 at the (larger)
vision radius. Then they raise Position Age to the power of that value. This has the effect
of reducing the importance of Position Age with distance, as they argue it is less impor-
tant for peers to have fresh information as you move further away. Any peers outside the

vision radius have no effect on the PQ metric whatsoever.

PQ is first described as a pairwise metric. To measure the PQ for an individual peer

is simply an average of PQs for every other peer they are connected to. Those averages

38

averaged yet again are the PQ for a simulation round, and finally all rounds in a simulation

run are averaged again to create the overall PQ) for the whole solution/simulation run.

There are many flaws with this method of evaluation. First the fundamental assump-
tions about game mechanics. Not all games have a notion of distance-based levels of
importance/detail, and an interaction at a distance might very well be as important as
one close up. For example, in an FPS, shooting an opponent through a sniper scope is a

critical interaction at a distance within a vision range.

Further, the actual radii that pSense used were not discussed, nor was the justification
behind picking reasonable radii. This assumes it is even possible to pick general-purpose

radii, since different types of games have different parameters (cf the FPS example).

The units are also very rudimentary, since they focus on hops rather than latency,
which assumes that inter-peer latencies are uniform. In practice, this is not the case, and

the heterogeneity in latencies is too significant to ignore.

Aside from the formulae for calculating PQ being rather arbitrary and only superfi-
cially justified, valuable information is lost by all the averaging. It is just as important
to consider distributions and upper bounds, as a few outliers with terrible PQs will be

ignored by this metric.

2.8.5 Delay

A straightforward metrics that is not limited to is the delay/latency between
pairs of peers [114, [141]. This is usually plotted against the number of nodes to evaluate

scalability.

Work by Rooney et al. [115], while tangential (multicast reflectors within static [AO]
subscriptions for games), build other abstractions on top of this, such as the concept
of “TooLate packets” (the frequency of which increases as they artificially increase packet
loss ratio). Metrics like these require a latency threshold, which practically speaking is

game-dependent (see table , beyond which incoming packets are too late.

Similarly, they define “RelevancyTime”, which is the time beyond which a packet is
no longer relevant and should not be retransmitted. Incorporating retransmission into a
system in this manner can improve other metrics, without incurring the disadvantages of
full TCP. This is similar to what Itzel et al. [66] call interactivity, except it is based on
the action (i.e. some kinds of state updates can have much tighter latency tolerances /

interactivity requirements).

They also introduce priority, which would allow consistency management schemes to

39

selectively priorities state updates based on type. For example, in the case of congestion
resulting in consistency degradation, the consistency of update types with lower priori-
ties (such as certain movement updates) can be relaxed before that of those with high

consistency requirements (such as virtual trades).

In a [VE| context, delay is implicitly considered in consistency and staleness metrics,

and is therefore less informative on [User Experience (UX)| than those.

2.8.6 Reliability

Reliability is less explicitly defined, and can ambiguous, however VON uses this in part to
mean how consistency (in the topological sense) changes as packet loss (global, artificial
(in a simulated environment)) increases, as well as how many recovery steps are needed

to bring consistency back to 1.0.

Richerzhagen similarly plot drop ratio against radius [114]. As expected, bigger
result in more collisions and the drop ratio goes up.

In general, when simulating these systems, it is useful to evaluate the effect of packet

loss on the various [Quality of Service (QoS)|indicators.

2.8.7 Drift distance

Drift distance is a metric that is related to consistency, and can be more meaningful in
genres such as[FPSg, where a player’s position drifting from the ground truth position can
result in shots being missed and a quick deterioration of player satisfaction, as even near
misses can be very frustrating. This metric is in fact very useful when testing position

interpolation /prediction schemes.

This metric was likely first defined in 1999 [33] as the difference between a player’s
position on two hosts. If the drift distance is 0, the game is perfectly consistent. The
same work also informally analyses player satisfaction in an attempt to narrow down a

threshold for “acceptable” drift distances.

Later, this metric was used in VON and other networks [61} 70] and is usually
plotted against the number of nodes in a network.

40

2.9 Evaluation workloads

The second ingredient for the proper evaluation of a P2P solution is an appropriate
workload. This should be at the very least avatar mobility data. In this section we

characterise the workloads used in previous work and discuss their merits and demerits.

2.9.1 Simulation testbeds

The tools for evaluating are currently still very limited. Most researchers will
either build their own, or use general-purpose simulators such as PeerSim [104],
which is limited in its utility for this sub-area. For example, PeerSim measures hops
between peers, but not much beyond that, which makes it difficult to bridge between
those simulations and real networks with heterogeneous links between peers and different

load balancing schemes.

Incidentally, Triebel et al. have created a game specifically for evaluating systems
[129]. Unfortunately, as we have already mentioned, this can make the scope of an

evaluation very narrow if it is only suited to one game.

As part of our work, we have decided to develop and release a flexible evaluation
framework for topologies, with built-in support for various mobility models and
streaming traces for the research community to benchmark their systems under a variety

of metrics covering as many areas as possible. We present this framework in chapter

2.9.2 Mobility workloads
2.9.2.1 Characterising traffic

There have been a number of analyses of game network traffic |4, 36, [21]. Sometimes,
these are in conjunction with mobility analysis [136] where researchers look at how the

two are linked with upload and download traces from individual peers.

Unfortunately, a lot of this kind of research is third-party, meaning the traces are
based on data that only individual clients can receive, which is especially limiting in
the case of client-server architectures. It is rare that research by game studios with
unprecedented access to server-side data is published. For example, Microsoft made
great strides in estimating network based on XBOX 360 data they collected
from their Halo 3 players [90]. It is impossible for anyone except Microsoft to perform

this level of research, as it relied on data that only they have access to, such as the 1P

41

addresses of all their players and when they are active. It would also be difficult to release
this data to external researchers as it would violate the privacy of their users. This kind
of data will of course always be better than artificial traffic over academic networks such
as PlanetLab or Emulab. This is similar to e.g. how the bot/spam-prevention methods of
social media giants cannot possibly be replicated by external researchers, as their models
do not have the same level of completeness of training data. Since this kind of research
is usually motivated by increasing profits, it can be argued that there is also an incentive

to keep trade secrets and not publish intellectual property for competitors to see.

Microsoft’s results allowed them to predict the quality of network paths (also taking

diurnal activity cycles of their players into account). They define “quality” in terms of

[Round-Trip Time (RTT)| and capacity. In the first instance, they use these predictions to

decide if they should probe a path. They found that in general, IP addresses are enough
to have a good estimate of network paths. If that is not accurate, the estimate can be
improved through IP prefix history, and geographic coordinates provide estimates that
are accurate enough to filter out low-quality network paths that would definitely have
too low an [RTT] to be worth probing.

2.9.2.2 Latency consideration

When evaluating P2P overlay networks for VEs, related work very rarely considers hetero-
geneity in the underlying physical networks. This is largely because network conditions
do not play a role in the way the overlay networks are structured, and most methods

focus solely on avatar virtual positions.

The most a previous evaluation has done in considering the physical network is Col-
yseus |10] which used MIT’s well-known King dataset [55] in order to simulate realistic

pairwise latencies.

2.9.2.3 The holy grail of workloads

The main problem with evaluations in this area is that generally research activity is
limited to academia or third parties, rather than multiplayer game developers and studios.
Due to this kind of research being relatively experimental and hard to get right, there is
little incentive for game developers to undertake this research with no guarantee that the
effort is financially worthwhile. Similarly, there is little incentive to sacrifice the extra

storage space to log player locations and other data.

As aresult, all workloads in literature (that are either used directly or to build mobility

42

models) are collected indirectly in a usually painstaking manner, and can have missing

data and temporal gaps due to AOI constraints or bots being kicked [93].

The perfect dataset to evaluate P2P overlays for games would include:

Logs of all avatar position updates

Pairwise latencies between players; the denser the better

Traffic logs between players (other traffic beyond position updates, like chat)

Any other individual and pairwise metadata that may be relevant (e.g. reputation,

trust scores, account age, etc)

Geographic location and/or IP address

A dataset like this would allow systems to be built and experiments to be run at an
unprecedented level. A dataset like this could in theory be built passively on the game

servers of any client-server multiplayer game.

The second point would require an actual P2P network for players to be able to ping
each other, but barring that, there are other existing methods for building an NCS that
do not require this, as discussed in This can be supplemented with geolP data —
this is the only reason we include it in the list above. This also avoids the disadvantage

of exposing player IPs to other players.

On the subject of anonymity, mobility data is virtually non-identifying, and any other
traffic (such as chat) can simply be represented by a number of bytes. This would allow
an accurate simulation of multicast traffic for playback over a custom network. As part of
this research, we have collaborated with the developers of an independent, browser-based
sandbox to build a rich dataset that captures as many of these characteristics as

possible, so we will revisit this topic again later.

43

Chapter 3

Characterising Networked Virtual

Environments

3.1 Overview

In order to to build [Update Dissemination (UD)|systems for [Networked Virtual Envi
fronments (NVEs)| we must first understand themselves. In we laid out a set
of research objectives with emphasis on designing and implementing a system that can
maintain performance under different use cases. While we have already defined and
justified what appropriate performance metrics are in we must still characterise
what we mean by “different use cases”. This is hardly straightforward.

In this chapter, we focus on capturing [NVE] constraints and requirements. To do this,
we build a large dataset from an existing NVE| and make targeted measurements over
this and other collected data. We also run a number of experiments and analyses to

understand browser and network requirements.

3.1.1 Measurement objectives

We can begin by making some observations from literature and our knowledge of net-
worked games and other NVESl We use this as a starting point to make much more

explicit, targeted measurements in order to properly set the scene and capture design

and evaluation requirements and constraints. Unlike other [Peer-to-peer (P2P)| systems,
variants have some important properties as follows.

44

Ephemeral connections Optimal topologies are strongly coupled to spatial, application-
layer information. Optimal topologies are therefore highly dynamic (moreso for certain
genres). This implies that connections are far more ephemeral. For update dissemination
in this context, structured topologies (especially those that do not take account of spatial

information) will always perform worse than unstructured topologies

Ephemeral peers Peers only remain connected for as long as they are present in an
[NVE] Depending on the device they connect from and the kind of connection, their
connection might also not be as stable. Peer presence is therefore similarly far more

ephemeral.

Small, frequent updates over unreliable protocols The disseminated data is
small, rapidly changing, and becomes quickly irrelevant. User experience therefore has
much stronger links to latency over other network metrics. Retransmission is pointless,
making unreliable communication protocols the standard. This data is never stored and
has a single authoritative source so it is also not replicated. Generally, the disseminated
data (e.g. position updates) can be predicted and interpolated, and therefore application-

layer optimisations can improve performance.

Cheating There are incentives for malicious behaviour which can manifest itself in

many ways. Some of these are unique to NVES|

In this chapter, we take an empirical approach to capturing the constraints and re-
quirements of by collecting and analysing a real that fits our research con-
text exactly. More specifically, a large-scale, browser-based [Massively Multiplayer Online|
|Game (MMOG)| with a range of distinct areas with different patterns. Through a

broad analysis of the datasets we built from this, we draw out key insights and observa-

tions that delineate where the relevant constraints and requirements lie. We then use this
to inform the design and implementation of our system, such that these requirements

are met within the existing constraints.

With this chapter, we aim to answer a number of questions that reveal these require-

ments:

1. How is activity distributed across areas?

2. How dense do [Area-of-Interests (AOIs)| get?

3. How many players / how does player activity change over time?

45

4. How does player count relate to [AOI| density across different areas?
5. How are players distributed within areas?
6. How active/idle are players across different areas?
7. Are there different player mobility classes within the same area?
8. How prevalent is uniform motion across areas?
9. Do players exhibit group clustering?
10. What kinds of cheating are common?

11. Can vote-based ranks / social networks be used as a proxy for “reputation” to be
used in reputation-based neighbour selection? Can other metrics (e.g. account

age) for evaluation purposes?

12. Is device resource heterogeneity significant?

Further to this, we must acknowledge the additional constraints posed by our deploy-
ment environment: the browser. These constraints will drive our design and evaluation
beyond just the constraints. To capture these, we seek to answer two additional

questions:

13. What is the connection establishment time overhead with respect to pairwise la-

tency?

14. What are the limits to the number of connections across browsers/devices?
We group these questions into different sections, explain why they are important, and
answer them empirically. Wherever we tackle a different question, we will signpost this
through repeating a question in a blue box. From our results, we draw out design and

evaluation requirements which we put in green boxes. At the end of this chapter, we

collate these and summarise.

3.2 Existing datasets

In the same way that mobility models can be developed from real mobility traces, some

P2P| [Interest Management (IM)| approaches directly use mobility traces for evaluation

46

[132,38]. These traces are usually collected by strategically placing bots in [Virtual Envi-
ronments (VEs)|and logging all position updates they receive. The virtual environment of

choice in literature is overwhelmingly the social Second Life, although some pa-
pers build their own mobility dataset from World of Warcraft or the [First-Person Shooter|
(FPS)| Quake and its sequels, or other lesser known games such as Freewar.

It is important to note however that position updates may be significantly sparser
than what the player actually sees, and clients will usually at the very least interpolate
positions. Ever since TRIBES implemented rollback and client-side prediction for player
locations in 2000 [39], virtually every serious networked game has done the same. Position
prediction (in addition to interpolation) can then lower inconsistencies between peers even
further.

At any rate, these logs of player locations over time can then be played back over
real or simulated networks and the metrics discussed previously can be measured. After
reviewing as many instances as possible of traces like these that were collected in the
literature, we have reached out to the authors involved. At the time of writing this
thesis, there are no public location trace datasets available. Any datasets that were at
one point publicly available (some even used again in other papers by different authors)
are now defunct. Of the authors who have responded to us, in most cases, these no longer

have access to the traces they used, for a variety of reasons.

At the same time, video game publishers have no incentive to build or release datasets
like these, as the research that would make use of this data is very specific, exploratory,
and difficult. Small publishers do not have the resources to undertake this research,
while big publishers do, but might as well focus these resources in more predictable,

well-established directions (such as simply paying for more/bigger servers).

For these reasons, we have decided to build our own dataset. This dataset can be
used for a variety of different kinds of research, e.g. on mobility, topologies, game
AT social network analysis, even online linguistics (from game chat data), among many
other areas. In the following sections, after briefly describing this dataset and how we
built it, we focus on mobility in the context of [M] and topologies that take avatar

virtual positions into account.

3.3 Our dataset

Some general statistical mobility datasets are currently still available, however this kind of

evaluation requires full avatar location traces. At the moment, this means that in order to

47

perform a trace-based evaluation, we must collect this data and build a dataset ourselves.
In an ideal world, several complete, high-quality datasets would exist for different games
and game types that researchers could benchmark their algorithms against and compare
results in a robust way. We attempt to bring that closer to reality by compiling a rich
dataset of network and mobility traces for the browser-based Manyland. This is

one of the major contributions of out work.

3.3.1 Overview of Manyland

The self-described “sandbox universe” Manyland] is a browser-based where
players collectively build the worlds in which they play. Besides creating new areas and
objects, players can also script behaviours within these, making it almost like a game with
a built in game engine, so different areas can have wildly diverging genres of gameplay
— from fast-paced shooter areas to social hangout areas. Figure|3.1]is a set of gameplay

screenshots from across different Manyland areas.

&5 R

STy
Ly RHF SEAERAKRROK i

M

-

YEAH PEAR™

§ 4 T
3" e’
FASFIEL TALN N EH WIS BN GREHE

Figure 3.1: A set of gameplay screenshots from across different Manyland areas, courtesy
of the official Manyland press kitEl

Besides this, Manyland has a number of very pertinent characteristics that make it an
ideal NVE]| to examine in the context of our research. Indeed, datasets from other

http://findmanyland.com
?http://www.findmanyland.com/press/

48

http://findmanyland.com
http://www.findmanyland.com/press/

would lack several of these. These characteristics are as follows.

e While clients exist for other platforms (like iOS or Steam), these are simply web-

browser wrappers, and Manyland is browser-based at its core

e The universe is divided into user-created “areas” that can have wildly different kinds
of mobility patterns and network requirements. Areas can extend infinitely in all
directions. Some are sprawling, while others are small and contained. Some are
more conducive to socialising, while others are for competitive games with a high
degree of motion. Some even change the mechanics of the game from a platformer

to a top-down view.

e Manyland has a built in friend network and reputation system driven by upvotes and
flag reports (formerly downvotes). Users can be ranked between 1 and 5, which also
gives reputable users more moderation privileges. Users with rank 10 are admins,
and users with rank 0 are banned. This built-in reputation system is invaluable for
investigating the use of reputation systems in neighbour selection and its effects on

mitigating cheating behaviour in a network.

e Recently, the number of players online per day has sunk by an order of magnitude.
The official website boasts 1000s of concurrent players daily, but as a result of

growth being stifled by costs, this number fluctuates in the 100s today.

The last is unfortunately a struggle felt more strongly by many independent mul-
tiplayer game developers. Unlike single-player games, multiplayer games have running
server and maintenance costs that can scale disproportionately with the number of users.
Many independent developers choose not to relinquish integrity and quality in exchange
for more aggressive advertising and monetisation strategies, and as a result fight an uphill
battle.

3.3.2 Data collection

Like many other browser-based multiplayer games, Manyland uses WebSocket connec-
tions for communication between the server and clients. Clients send updates to the
server, and the server then forwards these to players within the client’s m (with a few
exceptions). These messages are obfuscated and compressed (also called “minification”),
however this is straightforward to reverse engineer, as the deobfuscation and decompres-

sion are part of the client.

49

With the permission of the Manyland developers, we built bots that passively record

all the traffic with a wide coverage of the most popular areas. In order to keep our bots

lightweight, we do not run a full client. Instead, we create our own stripped-down client

in Nodejs to circumvent the large overhead of headless browsers. The process can be

summarised to the following steps:

10.

. We first make a series of three different requests to the main page, simulating

browsing to it, in order to get session cookies

. We then query the latest minified client source code, safely eval it, and extract the

functions we need based on their location relative to parts of the code that remain

unchanged, and deobfuscate these

. After parsing our previously collected session cookies, we set an X-CSRF header to

authorise all subsequent requests

The next steps involve doing the bare minimum required to pretend to be a real

client; we send a series of initialisation requests to undocumented API endpoints

The response from one of these gives us the WebSocket host and port that we need

to connect to, as well as other parameters

. We connect to this WebSocket and send a series of initialisation messages down it,

interleaved with delays

. These bots cannot be invisible, so in order to have them blend in as much as

possible, we send a series of messages to the server to (i) change our name to a one
picked from a list of realistic fake internet handles, (ii) change our appearance to a

random, generic, community skin, and (iii) set the state of our player to “sleep” so

they are effectively ignored for being [Away From Keyboard (AFK)|

To position our bot, we send a spoofed position update to the WebSocket server as
defined by the script that orchestrates these bots. In a different context, doing this

step would definitely be considered an exploit

The bot is now ready to passively collect any and all inbound application-layer traffic
on the WebSocket connection (with only occasional heartbeat messages outbound

to prevent despawning)

All data is anonymised on collection (details below)

20

These bots are spaced out in a grid formation in such a way that they have full [AO]|
coverage of the entire area, with a level of overlap that makes every second bot redundant
in case of disconnections. For areas that extend indefinitely, we have the bots on the edges
fork another bot process next to themselves when they detect any player in their [AO]]
such that we capture everything. We store a list of bot user IDs that we use to later filter

the bots out of the collected dataset, and we also remove duplicate traffic.

Furthermore, a lot of game logic (e.g. game physics) is entirely client-side, with no
server-side validation. Since our lightweight bot client does not simulate physics at all,
we make sure that the bots are placed in positions that would not raise suspicion (e.g.

by defying gravity).

The actual updates, after unminifying them, are JSON objects. State updates are
binary, while other updates are plain text but both are parsed and saved as JSON objects.
Each has a property that says what type of update it is (e.g. a chat message, interaction,
state update, etc). There are currently 64 types of updates, and the schema of the object
will depend on the type (e.g. position updates may have x and y properties).

The raw traces are simply streamed into files (a new file per day) where each line
contains a timestamp, the deobfuscated update type, and the entire JSON object (as a
string). We create many other derived datasets from this, but for this chapter, we mainly
care about mobility. To make this more usable for our purposes, we therefore also convert

these full traces into stripped-down mobility traces.

The mobility trace format is simple. Each trace file is transformed into a CSV file
where the columns are: timestamp, player ID, x coordinate, and y coordinate. The first
time a player ID is seen is considered a spawn event. Any line without an x and a y

coordinate is considered a despawn event.

The questions we laid out earlier also call for the analysis of other kinds of data,
such as reputation data and other statistics. For these, we also built a set of scripts and
crawlers to gather other metadata and statistics of the game. We explain these in more

detail in the relevant sections.

We ran these bots sporadically through 2018 and 2019, as we were refining them, and
then continuously ran the most recent iteration since mid-October 2019, and have been
running them since. The server that runs these bots has a cron job for compressing
collected traces into tarballs on a weekly basis, copying them to a different server with

more disk space, and deleting them off of the server.

We make the data that we have gathered since mid-October 2019 available, in tarball

form, post-anonymisation, on request for research purposes. With the exception of a

51

measurements that we ran across the entire dataset, the majority of our research concerns
itself with only a subset of this data, which is much more manageable is size and freely
availableE] Player IDs and other identifying information has been anonymised and chat

text has been censored to protect the privacy of the players.

3.4 Areas and workloads

One of the biggest challenges in designing systems for is ensuring that it can
support different genres and environments. The technical requirements for a large-scale
social are vastly different to small-scale, fast-paced [FPSsl Indeed, while some
previous work does consider a range of workloads like these for evaluation [9], most get
around this problem by simply limiting their systems to one kind of environment, such as
Second Life-like social MMOGS. In §5] we evaluate how our system fares under different
workloads like these, however we must also consider different genres at this stage, as they

will directly influence the requirements we derive from them.

We note that an analysis of data collected from Second Life by Varvello et al. [133]
showed that the distribution of players across areas is very skewed. 30% of Second Life
Regions are consistently empty, 45% consistently have 5 or less avatars, and only 5% of
Regions reach 30 concurrent avatars as a maximum. It is not uncommon that players
concentrate around hotspots or popular areas in social MMOGS], in which case traces
from just these popular areas are more than sufficient for evaluating models.

Previously, we have also highlighted that one of the advantages of using Manyland as

a source of mobility data is the large variety of areas; from social hotspots, to fast-paced

Iplayer versus player (PvP)|combat areas. To clarify, these areas are not discrete parts of a

larger continuous space, but rather akin to different rooms/shards/dimensions hosted by
different servers. The environments across areas are entirely different and players cannot
directly interact across areas. It is also not possible to get from one are to another simply
by walking (in fact, areas can extend infinitely in all directions) but only by using a
portal-like door, teleporting there with a command, or browsing to a different URL path.
We must therefore select the areas for analysis carefully to capture both high activity

and workload variety. To do this, we ask:

p‘ How is activity distributed across areas?

3https://www.kaggle.com/dramar/manyland

52

https://www.kaggle.com/dramar/manyland

We have found that Manyland areas share similar behaviour, and our analysis confirms
what is already held true by literature. Manyland currently has over 720,000 areas with
100-200 new areas being created daily. We have crawled 200,000 of these and the resulting
statistics have proven this sample representative. Beyond the first few thousand areas,

the distribution remains largely unchanged.

1.00+
0.751
= ;
O 0.50- § § g
0.251
0.001_, , , i ,
0 250 500 750 1000

Total area visitors

Figure 3.2: An empirical cumulative distribution function of total area visitors ([0, 1000]
for visualisation)

Figure [3.2| shows a CDF of total number of visitors per area. We limit this plot to
1000 total visitors on the x axis for visualisation purposes and because over 99% of areas

have less than 1000 total visitors.

The area we sampled with the largest number of total visitors in its history had 749291
visitors. This area, and other outliers like it, pull the mean to 479.7 visitors. However,
the median is 29 visitors, and the third quartile is at 71 visitors. The first quartile is
similarly low at 12 visitors. The minimum is 2 visitors; the first is the creator of the
area who automatically visits the area when first creating it, and the second is our area

crawler.

Previous work analyses mobility within a couple of the most popular areas in Second
Life. Here too we select the two most popular areas for subsequent analysis. Not only is a

higher number of users and activity more useful for setting the requirements for scalable

23

systems, but these are essentially representative of other areas in the game. Areas with
very little activity are trivial to handle as a small number of players can simply be

completely connected, or indeed areas with a single player need no [P2P] networking at
all.

We go a step further by selecting two different popular areas with vastly different
characteristics, similarly to related literature [9]. Like in Second Life and similar, it is
typical for activity to be focused in a small number of areas as we have seen. Fortunately,
the two of these that we focus on are such areas and represent two different “genres” as

luck would have it.

The first, which we will refer to as the dynamic area, is what is known in-game as
one of the public “outer ring” areas. New players are most likely to spawn here, and the
area sprawls so far, that it literally takes days of non-stop walking to reach the furthest
stretches of where players have built. Players tend to cluster around the centre of this
area, where new players spawn and due to the transience of what is built in this area,

players tend to wander and explore.

The second, which we will refer to as the static area, is a closed building area with
a number of rooms. The layout is unchanging as only the original creator can edit it
and the original creator has not been online in years. Over time, it has become the most
popular area for chatting and social interaction, primarily due to its lack of moderation.
Generally, players sit in one of the rooms and chat with each other, occasionally moving

to different parts of the building.

We focus on these two popular areas in particular as they illustrate two extremes —
slow-paced, social workloads as well as fast-paced, motion-heavy workloads. A player
in the static area has an average position update emission interval of approximately 3.4
seconds, while one in the dynamic area has an average interval of 700 milliseconds. This
rate is not fixed and position updates are sent on motion. We will explore this further

shortly.

These are also the most popular areas of their kind and provide the most useful insights

due to their relative levels of traffic. We highlight two future design requirements:

Design requirement (1)

Topology must perform well under static conditions

Design requirement (2)

Topology must perform well under dynamic conditions

o4

3.5 Measuring AOI density

In §2] we discussed [[M] and [AOIg Intuitively, the number of players within an will
drastically affect the performance of any given topology. For example, a topology that
completely connects will scale badly for dense [AOIl Meanwhile, one that leads to
heavy intraJAO]| forwarding may be more prone to loss and malicious behaviour. It is
therefore important that we understand how dense get, and how this changes over

time (if at all), such that we can find topologies that accommodate this.

3.5.1 AOI density due to player activity

pd How dense do[AOI4 get?

To answer this question, at a granularity conducive to useful insights, we play back
a week-long segment of our static and dynamic traces, from 2019-11-11 to 2019-11-17
inclusive. At ten minute intervals, we go through all players and find the mean density

of their (i.e. how many other players there are in their [AOI). Figure |3.3| plots these
over time for the two traces. The trend lines, with 0.95 confidence intervals, are computed

through [locally estimated scatterplot smoothing (LOESS)|

30 Area

— Dynamic
— Static

I

‘7

520

o

L]

(@)

<

=

s10

=

0
Mon Tue Wed Thu Fri Sat Sun Mon

Time (UTC)

Figure 3.3: Mean density across areas sampled at ten-minute intervals

The most striking aspect of these measurements is the seasonality — we see very
obvious diurnal cycles that persist across the weeks, months, and years, with only a
secondary, slower movement based on Manyland’s popularity over the years. It is not
a stretch to presume that the changes in density could strongly correlate with the

number of players online at any given time. We therefore ask:

95

p‘ How many players / how does player activity change over time?

As we have previously alluded to, Manyland has seen a stark decline in the number
of players since when it used to be in the thousands. Still, the level of activity we see is
similar to other social like Second Life which most related literature analyses.
In order to understand how player activity affects other metrics over time, we make
use of undocumented Manyland API endpoints to sample global player activity at ten-
minute intervals. This is more accurate than our bots, especially since our bots do not
have complete area coverage, and indeed serves the secondary purpose of telling us what

percentage coverage our bots do have.

In addition to this, we also track the players online in our two sample areas (static and
dynamic) which, out of over 720,000 areas, account for 33.69% of online users combined.

Figure [3.4] is a plot of these samples over time.

Area
300+ - SDynjamic
= Global
=
2200+
@]
e
<
E
<100
O- T T T T T T T T
Mon Tue Wed Thu Fri Sat Sun Mon
Time (UTC)

Figure 3.4: Mean player count across areas sampled at ten-minute intervals. The global
avatar count (green) is included to illustrate the proportion of players in the two areas
of focus compared to game-wide

The seasonality of this data is immediately obvious and we can see how it correlates
with [AO]| density. We have clear cycles of activity that correspond to the hours where
most players are active. There are increases on Fridays and weekends, which makes sense,
as that is when most players are off school/work. This seasonality is important, since
topologies need to not only be able to scale to different numbers of players, but also
handle the transitions between these numbers well if they are not constant. If we focus
on the pattern for just a 24hr period, we also see a subtle bimodality. We summarise the
distribution of this data in table [3.1] and plot these in figure [3.5

26

Table 3.1: Statistical summary of player count distributions across environments

Area Min 1st quartile Median Mean 3rd quartile Max
Dynamic 4 15 22 22.58 29 64
Static 4 20 30 29.7 39 65
Global 41 97 173.5 159.9 216 324
Area
0.031 B S
[l Global
>
—
"% 0.021
o)
)
A
0.011
0.001
0 100 200 300

Avatar count

Figure 3.5: Density plots of player count across areas

Here, the bimodality becomes much clearer. One of the developers of Manyland gave
us some insight on the demographics of the game (more up to date information in §3.9)).
The overwhelming majority of players are based in the US, followed by Canada, and the

UK. Some countries (such as Zimbabwe) have only one player.

All times are in UTC, so if we take US timezones as being between UTC-8 (San
Francisco) and UTC-5 (New York), the second, larger bump roughly corresponds to their
late afternoon and evening (17:00 — 20:00). This bump is itself mildly bimodal, which
can be explained by the concentration of people towards the east and the west of the US
in contrast to the middle. Similarly, if the EU (UTC, UTC+1) corresponds to the first
bump centered around 18:30, which fits perfectly.

Interestingly enough, there are peaks in traffic at noon on school days. According to
the developer, this can be attributed to the rise of Chromebooks (which are also generally

weak “disposable” laptops) as the standard school computers. Manyland was featured

o7

on the Google Chrome Web Store and also won a “best of 2014” award, which built a lot
of momentum for Chromebook activity and spread in schools by word of mouth. When

the noon lunch break starts, many school children visit Manyland. This also sank the

average player age.

It is conceivable that one can infer a coarse geographical location of any given player
reasonably accurately after tracking their online activity for a sufficient length of time,
knowing the average activity patterns by timezone/latitude and distribution of players by
country. We aim to augment our dataset with anonymised ground-truth user geolocation

data such that this kind of research can be performed with it.

Diurnal patterns like this are very common in online games. It is important to consider
spikes caused by virality and account for dynamic load as the number of players change

relatively predicable over the day, week, and beyond (e.g. the summer).

Having seen shown the correlation between player count and [AO]| density however,

we are left with a much more crucial question.

p‘ How does player count relate to[AO] density across different areas?

To answer this, in figure [3.6] we plot [AO]| density against player count across our two
environments. Here too, these are trend lines, with 0.95 confidence intervals, that are

computed through [LOESS| but with a span of 0.5 (as opposed to 0.05) for maximum
clarity.

301 Area
T SYhamic
2
Z00-
(]
ho]
o
<
£10-
O
>
0]
0 30 60 90

Avatar count

Figure 3.6: density versus player count across environments

o8

Here we make a critical observation: while [AO]| density will increase linearly with the
number of players, the rate at which density increases with player count strongly
depends on the type of environment. Recall that the “static” area is smaller, more
contained, and players generally sit and chat in close proximity, while the “dynamic”
area is larger, sprawling, and has a significantly higher degree of motion. It makes
sense therefore that in the static area, a marginal increase in mean density by 1
requires only approximately 2.25 new players, while in the dynamic area, it would require

approximately 5 new players. The static correlation has over double the gradient!

There is an important caveat here however. The static area has limited space, and
it is unrealistic to assume that player count can increase indefinitely causing [AO]| den-
sity to increase in turn. If an area is too crowded, it becomes impossible to make any
meaningful interactions with others. Players naturally give each other space when chat-
ting, especially because otherwise chat text (which appears over a player’s avatar) would
overlap and become unreadable. We posit that there is an upper limit to density
that is dependent on area size, but this is difficult to observe in-game and prove because
there would be no consistent plateau, rather the area would just become less popular and

people would disperse to other areas.

The results in this section lead us to draw out several additional design and evaluation

requirements:

Design requirement (3)

Any [Application-Layer Multicast (ALM) must accommodate a
range of densities

Design requirement @)

Topologies cannot assume constant activity/density and must ac-

commodate cyclic changes over time

- Evaluation requirement (1)
E Area size and number of players in a synthetic trace must be set

in such a way that realistic [AO]| densities are emulated

Design requirement (5)

Topology must scale to a minimum typical volume of players (repli-

cation, connection limits, etc)

29

3.5.2 Hotspots

In comparing the characteristics of different types of areas, we have shown that existing
work on general-purpose networks that uses only social for evaluation is
at risk of being overly circumstantial. It does not end there however. State-of-the-art
synthetic mobility simulations always recognise that players do not distribute themselves
uniformly across a scene. Obstacles (such as walls), physical features of the scene, and
game-related hotspots all create uneven distributions of occupancy. This will of course
affect topology churn since these hotspots are like dense mini-areas nested within sparser
areas. So far, we have only looked at the mean density over time, which ignores this

notion. We therefore measure occupancy to answer the question:

p How are players distributed within areas?

To measure occupancy, we divide the area into cells. We define occupancy as the
per-cell sum of time players spend in any given cell across our week’s worth of mobility
traces. This sum is across all the players in a cell (i.e. a cell with 2 players for 2 seconds

has an occupancy of 4 seconds).

It is important to note that the way we measure this does not consider intermediate
cells, as motion is discrete. In other words, if our traces log an avatar’s position as
(0,0) at t = 0 and then (0,2) at ¢t = 4, then the cell at (0,0) has had an occupancy of
four seconds, but (0,1) (which the user had to physically cross to get to (0,2)) remains
unchanged, assuming a cell size of 1x1. This will not be ideal for all use cases, but for

the purpose of highlighting the existence of hotspots and waypoints, it is sufficient.

60

2000

Occupancy

. 0.75

, : : I 0.50

15001 [e . 2 "I
>10001
500
O_

~ 500 0 500 1000 1500
X
2000+ Occupancy

: i t 0.75

I 0.50

1500 . 0.25
~.1000
5001
O_

~- 500 0 500 1000 1500
X

Figure 3.7: Occupancy heatmaps of the dynamic area with cell sizes of 1x1 (top) and
10x10 (bottom)

61

Occupancy

1000 0.75
I 0.50
0.25
0.00
500+
> 0! T e
— 500+
— 1000
0 500 1000 1500
X
Occupancy
10001 0.75
I 0.50
0.25
0.00
500
> 0
— 5001
— 10001

Figure 3.8: Occupancy heatmaps of the static area with cell sizes of 1x1 (top) and 10x10

(bottom)

1000 1500

X

0 500

62

Figures and show heatmaps for both dynamic and static areas respectively.
For each, we show heatmaps with cell sizes of 1x1 (top) and 10x10 (bottom). In order
for these heatmaps to be useful for visualisation, we include only the 99.5'" percentile. If
we do not cut out this top 0.5% of extreme outlier, the heatmap is flat with a few spikes.
These spikes are not useful to us, as they do not represent normal player behaviour.
These are bots, idle game windows that are minimised/forgotten, or players where the
server did not notify clients of their disconnection. Our own bots are filtered out of the

traces.

We note that these heatmaps are global and do not tell us anything about per-player
behaviour, for example if one person moves a lot and others move very little. This is
something we expand on in the coming sections, however there are still insights to be

gleaned from these globally compiled measurements.

We also scale occupancy logarithmically for similar reasons. Where o is our raw
occupancy, we transform this through 1 —e~%°. k is a constant that controls the steepness
of the curve. We tune this to scale up the brightness of the dimmer areas, or seen
differently, to “flatten” the high occupancies that dominate the colour scale, for the scale

to be more useful. Table summarises these parameters.

Table 3.2: Additional occupancy heatmap information

Area Cell size | k | Heat mean
] Ix1 5 1 0.0267100
Dynamic
10x10 5 | 0.0689100
] 1x1 5 | 0.0288300
Static
10x10 5 | 0.0407494

In the case of the dynamic area, we have a very clear pattern of higher occupancy
at areas nearer the spawn point (at around (0, 1000)) with smaller hotspots throughout.
Paths that are well traveled show the highest occupancy, while paths that have many
alternatives less so. This is in contrast to the closed static area where occupancy is
highest at the most popular rooms and the paths between rooms. Occasionally avatars
may glitch into the wall, intentionally or unintentionally, causing a gap that is otherwise

empty (because a wall occupies it) to have some avatar occupancy.

These figures serve to show primarily that occupancy is far from uniform. They also
show in what way they are non-uniform, with a high degree of clustering around hotspots,
and very little occupancy between these. From the analysis carried out in this section, we

draw out an additional evaluation requirement based on the information we now possess:

63

lﬂ Design requirement (6)

Topology must account for concurrent sparse and dense regions

- Evaluation requirement (2)
m Synthetic workloads must emulate realistic occupancy distribu-

tions

3.6 Measuring topology churn

So far we have considered the topological implications based on spatial characteristics of
traces. In this section, we consider temporal characteristics in more detail.

After briefly examining session lengths, we focus specifically on motion. It makes
intuitive sense that the extent of avatar motion will affect [AOI| churn and therefore —
assuming that the [P2P| network in question seeks to maintain optimised topologies —
topology churn. For example, a static environment can stick with the same topologies for
longer, as do not change as frequently. This is especially important in a browser
environment as the connection/disconnection of links between peers carries a significant

overhead.

So while we have previously shown that the dynamic environment has the benefit of
lower density overall, these benefits may be counteracted by high topology churn due
to increased motion. Because of this, we first seek to characterise player motion across

environments at a high level.

3.6.1 Session length

Topology churn is not just caused by motion, but also the rate at which players enter
and leave an area (or log in and out entirely). It is important to consider this both when
building a [P2P| system but also when generating synthetic traces for evaluation. We
measure the length of sessions across players in our dataset areas in order to get a better

idea of how this plays out in reality.

p How long are players online at a time?

64

0.061
Area
[0 Dynamic
O Static
0.041
I
=
(]
A
0.021
0.00

0 30 60 90
Life expectancy (s)

Figure 3.9: Density plots of player session lengths across areas, capped at the 90" per-
centile for readability (overlap of both is purple)

Figure [3.9 shows distributions of player session lengths across areas. Here, the most
striking observation we make is how prevalent very short-lived sessions are. Not only are

these prevalent, but this prevalence is mostly agnostic of the type of area.

In the dynamic area, we have a median of 13.16 second sessions, and in the static
area 10.233 seconds. This is likely to due to the fact that both of these areas act almost
as central “hubs” due to their popularity. Players log in, only to immediately travel to
a different area. Similarly, players may briefly visit these areas to see who is there and
decide not to stick around. This behaviour is prevalent across any popular area, likely
across any game, irrespective of the type of area. The places with the most peers will

also have the most short-lived sessions.

At the same time, we do see a very large range of session times. The longest session
at the dynamic area was just over an hour and eight minutes long, and in the static area
just over an hour and two minutes. Meanwhile, the mean session time at the dynamic
area was 7.71 minutes, to the static area’s 58.86 seconds. While these density plots might
make it look like the sessions are very short, this is simply because there is less spread
at short times and a high spread at higher times. A session that is 2 seconds long is
double a 1 second session, but considered similar, while a 30 minute session is double a
15 minute session, but quite different. There are many players who do persist beyond a

minute in both areas.

65

The main takeaway here is that these sessions can be very ephemeral and this churn
can affect the stability of the network. For example, peers through which many paths with
no alternatives pass (no redundant paths around the peer) will disconnect the network
when they go offline. Based on these measurements, and the lack of correlation between
the prevalence of short-lived sessions and area type, we cannot rely on area type as hint
for predicting session length, and therefore peer ephemerality. As expected however, we
must account for the longevity of peer sessions when computing topologies, as rewiring
network paths to go through a newly-connected peer, only for them to disconnect seconds

later, has the potential to decimate performance. We draw from this two requirements:

lﬂ Design requirement (7)
Topology must consider high peer ephemerality

a Evaluation requirement (3

Synthetic traces must reflect peer ephemerality

3.6.2 Idle behaviour

pd How active/idle are players across different areas?

Players are neither constantly still, nor are they constantly in motion. The ratio of
these depends entirely on the in question. For example, a social (or a social area
in a may be more conducive to remaining still in one area and chatting. Meanwhile,
an action game, such as an [FPS| may have players moving near-constantly at risk of
death. SOTA mobility models take this into consideration [91], and we must therefore

characterise this in our dataset.

First, we classify avatars as active or idle over time. Idle players are only idle here
with regards to motion — they can very well be chatting in-place. As part of our dataset,
we do however make true “AFK” data available, as we track when players lose focus on
the game window, for example by switching to a different browser tab. This manifests

itself in-game as avatars closing their eyes.

As we are dealing with position updates, we need to find a time threshold beyond
which players are considered idle if they do not update their position. This threshold
cannot be too small, as this would result in noisy data with players switching state at a
high rate, for example if they were simply slightly adjusting their position or turning to

face another player (as opposed to traveling across the area). What we need is essentially

66

a high-pass filter to remove this high-frequency noise.

By finding occurrences of short burst of motion in our dataset, and manually classify-
ing them, we have determined that a suitable threshold for this game that removes noise
and aberrations is 3 seconds. If a player stays still for longer than 3 seconds, they can be
considered idle. We do not add these three seconds back to a player’s idle time, as doing

so would merely shift the distributions 3 seconds to the right.

Earlier, we noted how a server-side bug can sometimes result in despawn updates not
being sent even, after a player has disconnected, resulting in “zombie” avatars at the
edges of the map. To avoid having these zombie avatars pollute our dataset, we only add
to idle time measurements every time an update is received. Since these players never
receive a despawn update after their final position update, the time they spent idle as
zombie players is ignored from our dataset. Meanwhile, players that legitimately despawn

are unaffected by this.

1.00;

0.751

Area

— Dynamic
— Static

=
£0.50:
O

0.251

95% of static < 199.84 mins

95% of dynamic < 23.63 mins

0.001

0 50 100 150 200
Avatar idle time (mins)

Figure 3.10: Empirical cumulative distribution functions limited between [0, 220jm com-
paring areas

Figure |3.10] shows empirical cumulative distribution functions for the idle time over

players in the two areas we examine. We limit this plot up to 220 minutes as idle

67

times beyond that are outliers and simply make the plot less useful for interpretation.
Indeed, we note that 95% of static area idle times are below 199.6781 minutes, while
95% of dynamic area idle times are below 23.63131 minutes. These distributions fit the
characteristics of these areas, considering that the static area is much more conducive to
chatting and socialising, while the dynamic area has much fewer idlers, and the ones that

do idle have less reason to do so for as long.

More surprisingly however, 50% of static area idle times are below 5.58765 minutes,
while 50% of dynamic area idle times are below 26.497 seconds. This is further evidence

of the above observation.

There is clearly a large difference in how the type of environment affects topology
churn. Related work that considers only the social case gets lower churn “for
free” as a result of high idle times. When designing our system, we do not have that

luxury if we want it to be applicable to highly dynamic environments.

At the same time, the dynamic area has seen significantly more distinct /unique players
over the week; 13,153 to the static area’s 4,275 — an order of magnitude higher. Even
with this high level of traffic, the sum of all idle times across all players is 59.53 days
in the dynamic area, while it is 122.20 days (over double) in the static area. This is
important, because it tells us that the type of environment implies more about the level

of topology churn than the actual traffic it gets.

Table [3.3] summarises idle time distributions for both areas, converted and rounded
from milliseconds to human-comprehensible units. This is across all users (not just those

with one or more idle period).

Table 3.3: Statistical summary of idle time distributions across environments

Area Min 1st quart Median Mean 3rd quart Max

Dynamic 0Oms 8.93s 26.50s 6mins 31s 1min 35s 1d 9h 11mins 4s
Static Oms 1lmin 11s Smins 35s 41mins 9s 26mins bs 2d 1h 53mins 55s

The two minima of 0 milliseconds are likely as a result of players who came to the
area just to check who else is there. They probably walked across the map and did not
pause for longer than 3 seconds, before either going offline or to a different area. These
statistics reflect what we know about these areas. We keep track of player idle times
across sessions (for each player ID) so the maxima here do not mean that there are some
obsessive players that were online on the order of days. Instead, this is the total idle time

for that player across our sample week.

68

The most extreme player in the static area idles for over 7 hours a day on average.
From what we have observed, these are players that usually leave the game open in
a browser tab while they do other things. All this tells us is that this player had his
computer on and browser running for at least 7 hours a day. Users like these are of

course ideal for [P2P] networks!

This leads us to an important question. Can we generalise across players like this
(like all related literature has in the past), or are there different “classes” of players? For
example, excessively active versus sedentary and social players, in the same area. This is
especially important to capture the requirements for generating synthetic mobility traces
for evaluative purposes. These traces can be used to simulate player motion realistically
while allowing us to explore extreme scale and patterns of motion to stress-test our [P2P)|

networks.

p Are there different player mobility classes within the same area?

To answer this, we have every player that appeared in our sample week (across all
sessions; short-lived and long-lived) keep track of their transitions between states. When
we sample our measurements (every ten minutes like before), each avatar can either
transition from active to idle, or vice versa, or remain in the state that they are already
in.

The authors of Blue Banana [91] have done something similar in the past to design
a more realistic mobility model. They built a state machine with three states: Halted,
Exploring, and Travelling. They tweak the probabilities such that the number of players
in each state at any given point in time roughly matches those in the Second Life trace.
The difference between Exploring and Travelling is in maximum speed and the nature of
the motion. Different kinds of motion are less relevant to us since we are less interested
in generating natural-looking motion, and more interested in topology churn which can

caused by any kind of motion whatsoever.

There are two problems with Blue Banana’s approach in its applicability to us. The
first is that they built this state machine only from Second Life traces, which is a social
and liable to have similar characteristics to our static environment. The second
is that it generalises across player classes. If there really is only a single player class, then
this is fine, but otherwise too large an abstraction. With the following results, we aim to

answer that question.

Our approach involves no guesswork; we calculate our state probabilities from our

area traces directly. We sample state transitions at a granularity of 10 times a second

69

(100 milliseconds intervals) across the week-long traces. We sample at fixed intervals,
rather than whenever an update is emitted, as we have measured that a player in the
static area has an average position update emission interval of approximately 3.4 seconds,
while one in the dynamic area has an average interval of 700 milliseconds. This rate is
not fixed and position updates are sent on motion. Sampling at variable intervals would

therefore make comparing the two environments invalid.

We sample at 100 millisecond intervals in order to capture high-frequency transitions
in the dynamic area especially, otherwise the “resolution” of our data would make for
incomplete plots rife with clear discretization error. However, this has the downside of
making it seem like players remain in their current state with a much higher likelihood,
when in actual fact, the higher the sample rate, the higher these probabilities will be. By

definition, the more samples we have, the more of them will be between transitions.

1.00- ! 1.00
0.75- 0.75 (ﬁ
Transition Transition
E 0.50- - ﬁctive to glé:ltive E 0.50 - ﬁctive to g&:ltive
o ~ Tdle o active o ~ Tdletoactive
— Idle to idle — Idle to idle
0.25- 0.25 J
0.00- 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Probability Probability

Figure 3.11: CDFs of transition probabilities across players for the dynamic (left) and
static (right) areas

Figure are CDF's of transition probabilities across players for they dynamic (left)
and static (right) areas. Here we see a very clear pattern across both areas. The over-
whelming majority of players switch states with at a very low probability, and tend to
stick with the state they are already in otherwise. In other words, these states are very
“magnetic” for all players. To clarify, at our sampling rate, if a player stays idle for one

second, they have missed 10 opportunities to switch to an active state.

We can also see that the active-to-idle transition has a spike at the probability of
1.0, which the transition the other way around has barely any players with a probability
higher than 0.04. This means that there is a small set of players that go idle almost
immediately and stay that way. These probably do not stay online for very long or
immediately teleport to a different area. If they do stay in the area, they likely come

online, check who else is online, or check the in-game boards, and then leave. These are

70

then of course the same set of players responsible for the spike at probability 0.0 for the

active-to-active transition (as active-to-anything adds up to a probability of 1.0).

These could in theory form an additional player “class”, but it is fair to treat these are
exceptions since all other players have very similar behaviour with a tight variance. We do
note however that transition out of the active state have a higher variance in probabilities
across players. This means that it is less predictable how long a player will stay active,
and more predictable how long a player will stay idle. The reason for this could be that
motion often depends on how far a player needs to travel, which can vary widely based
on what their starting point and destination is. Meanwhile, idle times could be more
more predictable (as we have also seen in figure as they are location-independent,
and indeed may be linked across players due to them being idle as a result of a joint

interaction (e.g. chatting) that they end simultaneously.

Based on these measurements, we can (like [91]) create our own state machines here
without losing important information. Figure depicts these for the dynamic (left)

and static (right) areas.

0.033798 0.0173262
0.9659 0.9825 0.9827 0.9880
0.017142 0.011994

Figure 3.12: Mean player finite state machines for dynamic (left) and static (right) areas

All avatars start in the active state. As we have already seen, the transition between
states is less likely in the static environment than the dynamic one. In the case of the
static environment, once a player goes idle, they’re more likely to stay idle, unlike in the

dynamic environment.

At first glance, one might assume that these transition probabilities are quite similar
and should result in similar player behaviour, unlike what we have observed with idle times
being significantly higher in the static environment. We would like to stress however that
it is the differences in probabilities that matter here and will ultimately decide which

state is more prevalent.

It is absolutely imperative that results like these — if they are used for generating
synthetic mobility data — take account of the sample rate. This is also why we did not
round these probabilities to fewer decimal places above. Small differences here can have
tremendous consequences. It is difficult to get right because, generally speaking, players
do not emit positions at fixed intervals; they do so whenever the player moves and then

at a rate based on how far they have moved since the last emission.

71

From this, we conclude that it is safe to treat all avatars as a single class in the context
of mobility. However, different idle time patterns across different types of environments
can have significant consequences on topology churn. The dynamic environment should

be the worst case to consider. We are left with a set of design and evaluation requirements.

a Evaluation requirement (4

Synthetic traces must emulate realistic active/idle states

lﬂ Design requirement

Topologies must account for churn caused by dynamic active times

lﬂ Design requirement (9

Topologies can assume a single player motion class

a Evaluation requirement (5)

Synthetic traces can assume a single player motion class

3.6.3 Motion flow

So far, we have looked at the causes for topology churn in a limited way. The online
activity of players and the density in which they gather all have an effect on which
overlays networks are the most optimal. Topology churn is however not necessarily caused
by player motion, but more superficially relative player motion. If all players suddenly
decided to move in the same direction at the same speed, the topology would have no

reason to change, as each player’s remains unchanged.

In [NVEs a case can be made for parties of players that move as a group, or areas
of a map that control the flow of motion (e.g. a corridor) in a way that players tend to
move in the same direction. If situations like these are common, then topology churn will
certainly be affected by this. If we can understand to what extent this is prevalent, it
will inform our evaluation requirements as synthetic traces will generally not consider the
flow of motion over time. Realistic synthetic traces will not have randomly distributed
motion, so it is important that we understand this both for topology design as well as
creating synthetic traces for evaluation. Rather, it will have areas with uniform motion
in one direction (such as on a road) or where motion in certain directions is more likely

than other directions.

72

p‘ How prevalent is uniform motion across areas?

Figures and are equivalent to the heatmaps previously (figures[3.7 and [3.8)).

Every time an avatar in a cell moves, we calculate their velocity based on how far they
moved and in how many milliseconds. A cell’s final velocity is the mean of all the velocities

of recorded motion that has originated from it.

To visualise this information, we took inspiration from “bump maps” (aka normal
maps) in computer graphics, which encode a per-pixel normal vector into a texture,
where the x, y, and z coordinates are mapped to red, green, and blue channels. The

information in these textures is then used to simulate lighting.

Similarly, we take the per-cell velocity vectors, and map the angle of the motion, 6 to
a range of colours. Up, left, down, and right correspond to yellow, red, blue, and green

respectively. Angles in between correspond to intermediate colours on that colour wheel.

We also take the magnitude of the velocity vectors (the speed of the motions), ||v]|,
and map them to the alpha channel of our velocity map. This makes slower motion more

transparent and faster motion more opaque.

73

2000

15001

>1000-

500

~500 0 500

1000 1500

2000/
1500] GhesoRe
1000/

500+

1.0
180°UO° l 05
(-] -90° = 0.0

6 [l

90°

~-500 0 500
X

Figure 3.13: Velocity map of the dynamic area with cell sizes of 1x1 (top) and 10x10

1000 1500

(bottom) where opacity is mapped to speed and colour is mapped to angle

74

6 Il
1000 U ! o5
500
> 0
~ 5001
~ 1000
0 500 1000 1500
X
6 Il
1000 U!
500- '
> 0
~ 5001
— 1000
0 500 1000 1500
X

Figure 3.14: Velocity map of the static area with cell sizes of 1x1 (top) and 10x10
(bottom) where opacity is mapped to speed and colour is mapped to angle

5

In the case of the dynamic area, uniform flows (biased in certain directions) are
quite visible in figure [3.13] As players that spawn at the centre tend to move away
from the centre, paths that lead away tend to correspond to their colour more strongly.
For example, paths that lead up, such as ladders, are predominantly yellow and so are
areas where going up is your only choice, such as when there are solid blocks below you.

Similarly, where avatars are likely to fall due to gravity, the motion is blue.

In contrast, the flow of motion in the static area flows away from the spawn point
of new players (and players not yet logged in) at approximately (800, —750), up through
what is a central staircase and into various rooms (the rectangular shapes). This is why
the entrance to rooms on the right are green and those to rooms on the left are red.
Similarly, there are arches at the top of the staircases at (800,250) and (1300,0) that
correspond to the divergence of players left and right. The biggest difference however is
that the motion is much more uniformly spread in a closed space like this as opposed to
an open space like the dynamic area.

Recall that we scale the heats in the occupancy heatmaps logarithmically. Where

0 is our raw occupancy, we transform this through 1 — e%°.

Here too we adjust k to
make these weights visible and bring the means to a similar order of magnitude, while
ensuring that they are the same for the two versions each cell size, such that they can be
accurately compared. We do not remove any outliers, as there is a natural limit to the
velocities at which avatars can move, as defined by the games mechanics. This area does
not have any mechanisms for teleporting or moving unusually quickly. In rare cases, a
malicious player can spoof their position, however this was not detected in the week on

which we ran our measurements. Table [3.4] summarises these parameters.

Table 3.4: Additional velocity map information

Area Cell size | k Heat mean
| 1x1 10000 | 0.06910
Dynamic
10x10 100 0.12630
) 1x1 10000 | 0.08017
Static
10x10 100 0.12640

As we have shown, the answer to our question on the existence of uniform motion
flow is clearly yes. Synthetic traces that therefore incorporate a notion of movement
between waypoints (see §2.5.4 for more details) are a must. This leads us to draw out an

additional evaluation requirement:

76

&, LDvaluation requirement (6
Performance must be measured under workloads with some uni-

form motion flow

3.6.4 Crowd behaviour

We have not completely covered the motion patterns that could have an effect on topology
churn however. We have looked at the global flow of motion, which will tell us how
players move at a map level. There is another kind of pattern of motion that can also

affect topology churn, which we will examine next.

Earlier we alluded to players clustering in parties/groups and how that can reduce
topology churn. If we can show that groups exist in these mobility traces, then this will
have implications regarding the workloads we use for evaluation. These workloads must

take these crowding patterns into account as they will affect topology churn.

p‘ Do players exhibit group clustering?

Now that we have classified avatars as idle and active over time, we can examine
avatars clustering into groups. This is common behaviour in and is often ignored by

more naive mobility models.

Standard clustering techniques are not well suited to this problem, as group dynamics
make for irregular clusters and there can be may group-less individuals and pairs. For-
tunately, research into crowd behaviour is a well explored topic, so we can draw from
that.

Most techniques do however focus on the social dynamics of real human crowds,
where people can face each other and conversations happen within earshot. These are
well surveyed, and the most well-known framework is Kendon’s F-Formation from the
early 90s [82, [81, 25]. In the simplest terms, an F-Formation describes groups that
stand around in a circle and how they change. The task of detecting groups is generally

considered analogous to detecting F-Formations.

Unfortunately, in-game dynamics are very far from real human dynamics, so we draw
on a different, simpler technique from the literature [74] and build on this. We begin
by determining a distance below which two idle players can be considered interacting.

Active players are considered traveling and not part of a group.

Figure intuitively visualises why having this threshold is necessary — the

77

extends beyond the viewport, and players generally do not chat with players at the edge of
the screen (especially since their text would be cut off by the viewport). While viewport
sizes vary, the game is scaled such that each player can generally see the same distance

from where they are located.

m AOI radius

Viewport

Interaction radius

N

Figure 3.15: A visualisation of radius, viewport, and interaction radius in relation
to an avatar and each other

We set the interacting threshold to a third of the [AOIl We arrived at this radius
through measuring the distance idle pairs of avatars stand relative to each other while
speaking in close temporal proximity (to determine if they are chatting or not). To make
sure that these pairs are actually chatting with each other, we manually reviewed and

labelled the chat logs of 50 such interactions.

Going by what [74] call group formation detection, we can classify avatars into groups
with only position data. There is a danger in using this technique however, namely that it
relies on the assumption that the number of people in an area remains constant over time,
and the thresholds are tuned to this. We have already shown that our environments have
highly variable [AO]| densities however, and the interacting radius must remain constant.
This is in spite of the fact that players tend to give each other some space while chatting,
as otherwise their chat text (which appears above their avatar) would overlap and become
unreadable. We must therefore extend these techniques to take account of this additional

challenge.

78

Group formation detection [74] o 00 ®
o

" Interaction radius

Naive greedy clustering o 00 ® = o
[
L
«® P 0 .
Incremental merging o 0o ® .
[
[

Figure 3.16: A visualisation of avatar grouping as computed through three separate
techniques

Figure|3.16|visualises how different grouping techniques would apply to a set of players
where each group is represented by a distinct node colour. Active players are already
filtered out of these sets so these are all idle and capable of interaction. Idle players with
no interactions are considered groups of one. For the sake of demonstration, iteration is

done in order of x position (left to right), though in reality we do so in order of player
ID.

The first segmentation is arrived at through a simple recursive graph traversal. We
recursively visit the set of peers in a players interaction radius and count these. We do
this until all players have been visited and the result is a set of groups with no interaction

between them.

79

We can already see the problem with this in figure|3.16, namely that if avatars are too
dense, we can end up with oversizes groups. Similarly, if we have a chain of players where
each is in interacting range of the previous and the next, then this chain can span the
entire map and form a “group”. Clearly these cannot be actual groups as they are not
all interacting with each other, and also group conversation tends have an natural upper
limit in participant size, or else they fragment and form smaller groups with separate

threads of conversation.

The second approach is similar, but we impose an additional limit. During the traver-
sal, any new additions to the group must be within the intersection of all interaction radii
of the players within that group. This will result in groups where all members are within
interacting range of all other members, which is much more realistic and results in addi-

tional, smaller groups.

The problem here is that groups can vary wildly based on which nodes we start
traversing from. Because it is a greedy algorithm, early traversals will try to group as
many nodes as possible, which can result in lopsided groupings (e.g. blue versus green),
or less than ideal pairs at the micro scale (e.g. the rightmost green node and the leftmost

purple node are closer together than members of their actual groups).

We have therefore developed a third approach which results in groupings that are
much closer to reality. We begin by creating as many groups-of-one as there are peers.
Each group has a centroid, which is simply the mean positions of all the peers it contains.
At the beginning, this centroid is equal to the only peer each group contains. Then we
iterate through the groups, incrementally merging a group with the closest group (by
centroid) that satisfies the condition where all members of the of the new merged group
must be within interaction range of each other. If there are no more groups that satisfy
this condition, we mark the group as stable. We make as many passes over the groups as

it takes until all have been marked stable.

We can immediately see the benefits of our grouping method in figure |3.16, The blue
and green groups are no longer lopsided and groups are much more contained as a result
of the proximity-based merge. The chain is broken up into much more likely and realistic
interaction pairs. Overall, our method will result in a higher number of smaller, more
contained groups, which is exactly what we want as it matches what we see in reality.
This technique is of course just a heuristic, and iteration order will affect the outcome (we

iterate by player ID), but it is sufficient for our case. Truly optimal grouping is naturally
NP-hard.

The main takeaway from this is that our method solved the most prominent issue,

which is that groups may span outside the viewport, for example if a chain of avatars,

80

each within interaction range of the two neighbours adjacent to them, stand in a row
that extends beyond the screen. This can result in unrealistic supergroups, which our
method breaks up. Our method can also theoretically produce more accurate groups if
we augment it with players’ social network information, which our dataset also provides,

but this is a direction we have yet to explore.

Figure|3.17is a plot of the number of groups over time across environments, sampled

at 10 minute intervals.

Area
T Sypamic
10
=
=
o
Q
£
55
o \/\’M\W
0
Mon Tue Wed Thu Fri Sat Sun Mon
Time (UTC)

Figure 3.17: A distribution of the number of groups over time across environments

The trend lines, with 0.95 confidence intervals, are computed through [LOESS] We
see a clear correlation between the number of groups and the number of players on-
line, including diurnal seasonality and continental bimodality. Table [3.5] summarises the

distributions of the number of groups over time for both areas.

Table 3.5: Summary of distributions of the number of groups over time across areas

Area Min 1st quartile Median Mean 3rd quartile Max
Dynamic 0.000 0.000 1.000 1.233 2.000 9.000
Static 0.000 2.500 4.000 4.568 6.000 13.000

At the times with least activity, the players tend to cluster into very few groups (down
to a single group). As expected, when many players are online, groups grow in size and
split up, akin to social gatherings in real life. Due to the way we detect these groups,
and the fact that the dynamic area extends infinitely in all directions, we can rule out

the misclassification of groups due to players being densely packed.

We would also like to draw attention to the fact that the dynamic area has very few

groups across the board, especially when compared to the static area. Recall that the

81

dynamic area saw significantly more distinct /unique players over the week; 13,153 to the
static area’s 4,275. These players are more likely to be in motion however. As a result of
this, the dynamic area only has a limited number of groups from the small proportion of

players that do interact in some more sedentary hotspots.

The static area is also limited in size, so there is a natural limit to how many groups
can co-exist there. If it gets too crowded (although we have not observed this) then
players are more likely to leave than crowd closer together. As touched on earlier, this
is because players tend to space out while interacting such that their chat text does not

overlap with each other and become unreadable.

More interestingly however are the nature of the sizes of these groups. Figure [3.18]

which shows the distributions of group size across the week for each area.

0.5
04 Area . 103+ Area .
[F1 Dynamic . £ Dynamic
[Static o r Static
5
o [
03 5o, ol
Z o 1077
2 5
;0.2 8
£
510’ 3
0.1 Z
0.0 ! ! ! i i ‘ 100% ! ! ! ! ! !
1 2 3 4 5 6 1 2 3 4 5 6
Group size Group size

Figure 3.18: Distributions (left) and histograms (right) of groups sizes over time across
areas

Here we see clear Gaussian distributions with a high degree of overlap. This is because
regardless of the number of total players, the majority are most comfortable in regular-
sized groups. Indeed, interaction in larger groups are difficult for the reasons we have

discussed so far.

The mean/median group sizes for the dynamic and static distributions are 2.5 and
3.5, with maxima of 4 and 6 respectively. The slight divergence can be explained by
the size of the areas — the static area is a limited building, while the dynamic area is
literally infinite. In the static area, players cannot simply wander off and explore, so they
are more likely to interact with existing groups, though these interactions might not last

long.
We included a histogram of group sizes observed in figure m (right) merely to make

two points. The first point is to reiterate that we observed almost four times as many total

groups in the static area as in the dynamic area; 4,600 to the static area’s 1242 (at our

82

sampling rate of every ten minutes). The density plot on its own can mislead due to this.
The second point is that group sizes follow a roughly similar logarithmic distributions,
with the exception of the static area’s larger group outliers caused by limited space in

the area. These larger groups are observed only fleetingly.

All of this has some benefit to topologies as players do exhibit crowd behaviour
and create ephemeral hotspots as a result. For example, connections to peers in the same
group can be prioritised versus switching in favour of a peer that is just passing by. Our
results show that it is very limited however, since these groups tend to be small, and this

therefore does not have a churn reduction effect to the same extent.

lﬂ Design requirement

Topologies cannot rely on crowd behaviour for churn reduction

3.7 Measuring cheating behaviour

In §2.5.2] we discussed what cheating is in the context of and the major forms of
cheating. We also discussed the kinds of cheating that networks are more prone to,
and these usually stem from the lack of an authoritative server. In this section we look
at what kinds of cheating are possible, and connect this to the challenges in mitigating
these in [P2P] networks.

In order to determine what types of cheating need to be resilient against, we look
at cheating in the context of our dataset. We also look to the Manyland community and,
with the blessing of the Manyland developers, have implemented our own set of tools for

cheating as a proof of concept E]

In the process, we found a number of critical vulnerabilities (mainly [Cross-Site Script-|
ing (XSS)|) which the developers have patched after we have disclosed them. For example,

it is possible to paste links to images on the popular image hosting website Imgur, and

they are displayed in-game. Clicking these images opens the link in a new tab, however
the URLs were not validated and sanitised properly, allowing some special characters
that were not escaped to inject arbitrary code into the onclick handler. A simple proof

of concept is pasting the following link, which the game mistakes as an Imgur link:

http://imgur.com/’);alert(’hi’)//

‘https://github.com/yousefamar/manyland-utils — This repository is set to private due to the
high possibility of abuse. For research access with the Manyland developers’ permission, please contact
us directly.

83

https://github.com/yousefamar/manyland-utils

This will cause the browser to open an alert dialog with “hi” as if Manyland had sent
it. To get around the length limit, code can be injected that loads an external script and
runs in in the context of the game. Other characters that get escaped (such as “.”) can

be simply converted from character codes in Javascript or worked around, for example:

http://imgur.com/’) ;void($[’getScript’] (’https://amar’+
String[’fromCharCode’] (46)+’io/evilpayload’))//

Since we are running arbitrary code in the context of the game, we literally have full
control of the victim’s account. This means we can simply make off with their session

key and hijack their account, or get more creative by for example:

e Make server requests as the player, instantly deleting all their belongings, areas,

and creations (akin to ransomware)
e Ban the player’s account by triggering a cheat detection automatic ban
e Create official-looking dialogs and phish information

o Wait until the player attempts an in-game purchase, then replace the PayPal button
with a link to a phishing site to steal PayPal credentials

e Switch the player over to a makeshift private server

e Stream the game canvas, or tee all their outbound traffic, to somewhere and spy on
them

e Escalate by triggering a download of a Chrome extension (or even an actual key-

logger) and pretend it is an official Desktop client or such

Similarly, a server-side bug caused the IDs of items attached to forum posts to not be
properly validated, and where an onclick handler would collect that item, we could again
inject arbitrary Javascript. Besides these random XSS vulnerabilities, we discovered a
range of denial-of-service style vulnerabilities. For example spoofing your velocity to
an impossibly high number (or indeed spoofing any number of state variables) would
completely freeze the client as it tries to handle the physics simulation. Sending other
invalid characters would outright crash the tab (some of these were bugs in Chrome
itself that were patchedﬂ) and spamming very long chat messages would scroll client-side

rendering to a crawl.

Shttps://andrisatteka.blogspot.com/2015/09/a-simple-string-to-crash-google-chrome.
html

84

https://andrisatteka.blogspot.com/2015/09/a-simple-string-to-crash-google-chrome.html
https://andrisatteka.blogspot.com/2015/09/a-simple-string-to-crash-google-chrome.html

It is unfortunately not very difficult to find exploits like these in games if you dig deep
enough. These kinds of vulnerabilities are however less relevant to us, as they constitute
“hacking” rather than cheating. For the remainder of this section, we will examine the
ways in which cheating manifests itself and how it could affect topologies.

pd What kinds of cheating are common?

Going by Gauthierdickey et al. [47] taxonomy, which we discussed in more detail in
§2.5.2], we can ignore game-layer cheats, as these are a caused by game design holes, which
are game-specific and irrelevant to us. Similarly, network-layer cheating (denial-of-service
etc) are out of scope for the reasons we discussed in . Unsporting behaviour like
disconnecting right before losing is of course also prevalent here, but we do not focus on
this kind of “cheating” because it is not a network-level problem and can be discouraged

through game design. This leaves us with application-layer and protocol-layer cheating.

It is well-known in the Manyland community that there is very little server-side val-
idation to limit server costs. The servers does not check if a player’s state is attainable,
and will generally take the player’s word for it. This makes protocol-layer cheats unnec-
essary, because for example, why delay your packets to get a timing advantage when you

can just make yourself immortal instead?

The most common manifestation of this is players tweaking client-side gravity in
order to reach inaccessible areas as physics simulation is entirely client-side. This is
common because all it takes is modifying an easily accessible, unobfuscated variable:

ig.game.gravity.

The first measure that Manyland takes to combat this kind of cheating is through
obfuscating the client source code, and reobfuscating it every time there is an update
(such that the variable and function names are changed for example). This can act as a
reasonable deterrence to low-skilled cheaters. There are however players that are willing
to go through the effort to get past this, and worse, distribute the scripts that they write

to lower-skilled players.

A common example of this is players spoofing their own positions. This can be done
to get past physical barriers, but more often it is done by players who want to show
off that they can “hack”. This is less trivial, because the player object is difficult to
find/access due to obfuscation. Few cheaters automate this process, instead looking for

the variable manually.

The proper measure to preventing this kind of cheating is server-side validation — the

85

server can ban players who move at impossible speeds for example. Due to server-side
limitations, Manyland instead relies on other players to spot this kind of cheating and

flag the offending player.

There is a way to detect some instances of this kind of cheating client-side. Recall
that we have calculated player velocities over time to analyse player motion. Occurrences
of players spoofing their position will show up as a movement with a speed higher than
the maximum speed possible as defined by game logic (130 units per second). This of
course does not account for small movements through walls, but that can be detected too

with knowledge of where walls are.

To detect these, we scan through the velocity traces we derived in §3.6.3]and count the

instances where this threshold is exceeded. Within our week’s trace, we have detected:

e 45 instances of position spoofing in the dynamic area
e 518 instances of position spoofing in the static area

e 37 out of the 12988 players seen (0.28%) have been caught cheating in the dynamic

area

e 234 out of the 4,248 players seen (5.5%) have been caught cheating in the static

area

These numbers are actually quite large relatively speaking and indicative of a “scripters”
epidemic that the game has been facing. We note also that the static area has signifi-
cantly more cases of this. This is due to the fact that this social area is unmoderated and
cheaters like to show off their scripts here, as well as due to the existence of an unreachable

ledge that can only be reached through cheating, which many take as a challenge.

Cheating is even more consequential in smaller areas, especially since, where it mat-
ters, cheaters try to hide their actions such that they are not condemned or flagged.
Cheating like this is also quite bursty — one player will spoof their position one or more

times in a short period of time and stop once their goal is fulfilled or they are banned.

Manyland developers have since implemented server-side checks for players who at-
tempt to spoof critical properties such as their rank or their state as an area editor. This
is quite effective, since most cheaters will not bother to find out that this check relies on
a client update that can be disabled, making these state changes invisible to the servers
but still able to influence client-side logic (such as unlocking doors that only open to area

moderators).

86

Historically, players who send malformed updates can freeze and crash any client that
attempts to parse these. This has since been patched through client-side validation. With
the permission of Manyland developers, we attempted to find any way possible to cheat
by using the taxonomies from the literature as a guide to aim at a wide coverage of all
cheating vectors. Other existing cheating mechanisms that we have confirmed through

our proof-of-concept extension include:

e A range of movement cheats, including disabling gravity, changing movement speed,

or teleporting just by clicking the mouse cursor at a specific spot under a hotkey.

e Immortality, disabling fall damage, immunity to the effects of any items

e Spoofing client-side moderator status to access locked areas and use restricted items

e Suppressing client-side cheat detection to circumvent automatic bans

e Panning and zooming the game camera (cf “maphacks” in §2.5.2))

e Automation of slow game interactions such as building or removing structures

e Inspecting and overriding the behaviour of objects with client-side logic

e Applying the effect worn equipment to the player without having that equipment

e Inspecting hidden player stats and cloning player skins and items

e (Collecting items en masse

e Blocking ads (creates more screen real estate; cf “maphacks”)

e Spamming visual effects such as particles

The reason we list this is to point out that literally all of these can be solved through
server-side through various means, many of which we have already discussed in §2.5.2]
However, server-side validation is expensive both in terms of server costs and development
costs. If we bring over the intents of application-layer cheaters to the world, we can
see that these issues can instead be solved through client-side validation. For example,
if your client sees a player flying through walls, it can immediately know that they are

cheating. It is the game developers responsibility /decision to put this validation in place
either server-side (in client-server architectures) or client-side (in architectures).

The problem is what comes next? How can non-authoritative peers collectively decide

that one or more of them are cheating and should be kicked out of the network? This is a

87

difficult problem, and we already touched on consensus voting and their problems (Sybil
attacks etc) in These techniques are many, and far outside of the scope of this
thesis. We are however interested in indirect cheating mitigation at the network level.
In other words, we assume that there is some system in place that can automatically
or manually classify players as disreputable (for example, in Manyland, there is a vote-
based reputation system which we discuss in the next section) and we can simply use
that information to augment neighbour selection, such that traffic is less likely to flow

through cheaters.

We have also proven that it is possible to spoof persistent state (currency, inventory,
etc). There are many interesting approaches to mitigating this (many game-layer solu-
tions on which node should be an authority on something exist), however, as discussed
in this is unfortunately out of scope of this thesis, because it is unrelated to [UD]
In fact, this can be completely centralised, especially given that this class of traffic is
virtually negligible in volume compared to traffic, so there is much less incentive to

decentralise the propagation of persistent state in the first place.

There is one substantial challenge that exists for in networks (specifically
ones where peers may forward the communication of other peers) but not for client-server
networks. We need to ensure the integrity of messages in transit. This is not necessarily

a topological requirement but it is still an important design requirement.

Finally, while we have not observed protocol-level cheating as it is not possible to do
over a client-server network, it is common in other [47]. Assuming the integrity
of messages is maintained, the literature indicates that players gain an unfair advantage
by dropping or delaying packets. Some protocol-level cheating will always be a problem
regardless of the architecture (e.g. colluding with other players [47]) but these timing
attacks are more pronounced in a [P2P| context where peers must forward the packets of
other peers too (not just sending their own). A serious system cannot get away without
mitigating this by design. This discourse on the credible forms of cheating leaves us with

two additional requirements:

lﬂ Design requirement @

The integrity of messages in transit must be guaranteed

Design requirement @
lﬂ Network must be resilient to deliberate dropping/delaying of for-
warded packets

88

3.8 Measuring player reputation

We have previously alluded to the existence of a reputation system in Manyland, which is
one of the attractive features of using our dataset for research. Players have a global rank
between 1 and 5, where 5 (also known as “ring rank” in-game) is the most reputable and
gives players higher moderation privileges. These mainly include the ability to edit global
spawn areas, place “dangerous” objects in public areas (less reputable players may abuse
this privilege), and boot players with new accounts out of public areas. The developers
of the game have a rank of 10 (which on the client-side gives their players access to

diagnostic and debug tools), and players that have been banned have a rank of 0.

It is not unprecedented that networks use social metrics for neighbour selection
[56]. The purpose of this is twofold, both for improving topology performance. Firstly,
players are more likely to seek out and interact with reputable friends in their [AOTS|
Secondly, disreputable players (who may engage in cheating) can have a lower priority in

neighbour selection, which creates networks where fewer paths go through cheaters.

We already know that reputation can be used to enhance neighbour selection,
but we do not know if vote-based rank can. In order to also evaluate reputation-based
neighbour selection, we need an alternative proxy for reputation in order to set the
likelihood of a player cheating in a simulated/emulated network. It is an open question

how much reputation corresponds with vote-based rank. We ask:

Can vote-based ranks / social networks be used as a proxy for “rep-

pd utation” to be used in reputation-based neighbour selection?

Can other metrics (e.g. account age) for evaluation purposes?

This section is split into two subsections. The first focuses on reputation via vote-

based rank, and the second via social network metrics.

3.8.1 Vote-based rank

We took a sample of 223,040 players by querying the profiles of player IDs we have sourced
through various means, such as the players our bots have seen, the creators of items our
bots have seen, authors of crawled forum posts, and several other smaller sources. These
profiles are behind an undocumented [Representational State Transfer (REST)| API that

takes a player ID as a parameter and returns profiles as JSON objects. Once we found the

correct endpoint, we queried these profiles while also waiting a second between requests

so as to not put undue load on the game servers. It took some days to query all these

89

profiles in this way, but once we had them, we only update them at much less frequent
intervals. These collected profiles contain a lot of useful player metadata, including player
rank. We also keep track of changes in rank, for as long as our bots are running and

observe a change.

Figure [3.19| shows how rank is distributed across the players in our dataset.

150000+

100000

50000

Player Count

0 1 2 3 4 5 10
Rank

Figure 3.19: A histogram of player ranks

As expected, ranks are mostly middling, with a higher number of rank 5s due to
that being the maximum ranks and players increasing in rank over time. The number of
developers never changes and they are very few. Rank 4 is also largely empty, as it acts
as a kind of temporary queue for players that have already reached the criteria for rank
5. Developers manually check this queue and promote players to rank 5 in fixed batches
periodically. Most players do not go over rank 2 as they either do not play long enough,
play very casually (not utilising the full features of the game), or do not interact with

high-level players whose votes carry a lot of weight.

As we have the account creation dates for these players, we can also plot a histogram
of that information to see if it can be used as a reputation proxy at all. Figure [3.20

depicts this.

90

20000

15000

100007

Player Count

5000/

2014 2016 2018 2020
Join Date

Figure 3.20: A histogram of player account ages

Knowing Manyland’s history, we can see that the increases roughly correspond to
historical events, such as a viral posts on HackerNews and Reddit, the Chrome Web
Store feature, promotion through news publications, and the Steam release. Further,

figure |3.21] shows how player rank relates to player account age.

107 - Count
6000
4000
2000
=
&“ 5 .o - essee 06 oo 50 o ses sesess ses o
41 L. .
3 -
2. ———a——a. -
1.
0.
2014 2016 2018 2020

Join Date

Figure 3.21: A scatterplot of players binned into 100 vertical and horizontal hexagonal
bins of player rank against player account age with a Generalized Additive Model trend
line (red)

91

Here we can see a weak positive correlation between account age and rank, which is as
a result of how the in-game rank mechanic is designed. As there were far more players in
the past, those that came during those spikes and stuck around now largely make up the
rank 5 cohort. There is an in-game sentiment that these “ring-ranks” are an oppressive
elite from that time, making the barrier to rank 5 seem more amplified than it is. These
results may incidentally explain that sentiment. This tells us that age can indeed be used
as a broad proxy for reputation but ignores the finer details — reputable new players and

disreputable old players are lost noise.

3.8.2 Social network metrics

We alluded to the use of social networks in group detection. The literature also shows
that this information can be used for neighbour selection algorithm that mitigate
Sybil attacks [92]. This kind of metadata is therefore invaluable to our dataset. We can
use much stronger and more continuous social network measures to see if these correlate
with rank. With these measurements, we can examine the validity of vote-based rank
as a proxy for reputation-based neighbour selection metrics more confidently, as
social network metrics provide a more fundamental “ground-truth” for reputation, unlike

a vote-based integer rank from one to five.

While Manyland has a friends list system, where friends can find each other and share
updates among other functionality, these friends lists are private. On the other hand,
players can send each other items with a short message attached in-game that are public
by default. These gifts are called “mifts”. Sending mifts costs a small amount of money,
or is free for subscribers, as a means of monetising the game. Mifts serve no purpose

except as a gesture of social accolades.

Similar to how we crawled the 223,040 player profiles, there is another endpoint that
lists public mifts page by page. We query all of these in the same way and append that
information (who sent them and when they were received) to our database of player
profiles. Incidentally, one of our sources of player IDs was by recursively visiting mifters,
the players that have mifted those, and so on. The mift crawler discovered only a single
new/unknown player during this process who sent a mift, which is a testament to the

coverage our other collection methods.

This data creates a much stronger measure of social networks, as the number of mifts
one person has given another indicates the strength of a social bond, as opposed to the
binary nature of a friends list. The number of mifts a player has received in total is a

good indicator of their social standing, especially if they have received mifts from high-

92

ranking players or developers. The mift network is directed; asymmetric mift-giving
relationships can exist, most notably as players give the main developer many mifts,
but not necessarily the other way around. While the monetary barrier to sending mifts
excludes e.g. the younger demographic from participating, the data on the participant
is much more precise. In order to capture the excluded demographic, this data can in

theory be augmented with measures such as the time users spend in the same group.

Of the 223,040 players we sampled, only 2,866 (1.28%) were involved in public mift-
related activity (giving/receiving). This is understandable considering the monetary bar-
rier. Even considering just a subset of these however create social network graphs that

exhibit the same patterns and characteristics.

Unlimited mifts for subscribers (aka those with “minfinity”) are underutilised — at
the time of writing this, there are solely 23 players with minfinity, which even in our
limited sample account for 0.01% of players. As such, the monetary barrier to expressing
social praise in the form of mifts is generally the same across all players. It is typical in
most games that a small minority of players spend the most on in-game purchases, and

unscrupulous studios in fact target and rely on these “whales” to drive their profits.

We take this information and build a directed graph with weighted edges, where nodes
correspond to players, edges to mift-giving, and edge weights to the number of mifts given
(ever). We also set the node radii to the weighted in-degree of the node, which can roughly

correspond to the “popularity” of a player, as it is the sum of mifts they have received.

We then lay this graph out using the OpenOrd [96] force-directed layout algorithm.
This is based on the much older and more well-known Fruchterman-Reingold algorithm
[40] with simulation phases that make it generally more well suited to visualising large
graphs. Unlike other algorithms, it “pulls out” clusters, which is ideal for social network
and other small-world network graph analysis. Bear in mind however that edge lengths
correspond less to edge weights than with other algorithms, so what looks like a satellite

community is not necessarily one.

We rendered four different versions of this graph to better illustrate the different lenses
that we can examine this data through. In all versions, edge thicknesses and darkness

correspond to edge weight.

93

Eigenvalue

Centrality e —
1.0 o . ’ .
i 0.5 7 i
0.0 . . . i -
R,
\J %

Figure 3.22: Mift network partitioned by eigenvector centrality

In figure |3.22, we begin by colouring the nodes by eigenvector centrality after 100
iterations. This is a well-known measure for node influence in a network. Google’s
PageRank and Katz centrality are based on this metric.

Here we can immediately see that there are a core cluster of influential nodes, however
these interestingly do not correspond one-to-one with the most mifted nodes (the most
mifted node is one of the developers). The most influential node is a popular member of

the community well known for his artwork.

94

Rank

s

S

® 5
e 4
. 3 -
o 2
o1
® 0

..

Figure 3.23: Mift network partitioned by player rank

We compare this to a graph coloured by rank (figure . Note however that the
rank distribution across the mift network is not the same as the overall rank distribution
across all players. Here, 0.07% of nodes are rank 10 (developers), 15.35% are rank 5,
0.1% are 4, 19.3% are 3, 59.94% are 2, 0.98% are 1, and 4.26% are 0 (banned). The rank
distribution here is more skewed towards higher ranks than the overall distribution. This
has many reasons, primarily the fact that older and more reputable players (recall the
correlation between age and rank) are more likely to make an in-game purchase in the
first place. Further, the act of giving a mift is social, and can increase social standing in
and of itself.

95

It is clear to see that players with a rank of 5 occupy more central positions while
lower ranks are more dispersed, just as with eigenvector centrality. To better illustrate
this relationship, we plot rank against eigenvector centrality in figure |3.24] This shows

that player rank can be used as a valid indication of node reputation.

10 - .
Count

750

500
250

Rank

S =W hH A

0.00 0.25 0.50 0.75 1.00
Eigenvector Centrality

Figure 3.24: A scatterplot of players binned into 100 vertical and horizontal hexagonal
bins of player rank against player eigenvector centrality with a Generalized Additive
Model trend line (red)

We have previously shown a correlation between player rank and account age. For

good measure, we colour nodes by player age in figure [3.25

96

Account
Join Date

2012

2014 " ' o .
I 2017 }
2019 - R ~

Sx

i

Figure 3.25: Mift network partitioned by age

Account age within the mift network reinforces our earlier observation that age cor-
relates with social status. Note however that, while it is possible to hide received mifts,
older players are more likely to have more mifts just by virtue of being around longer and
interacting with others. We plot the received mifts (node weighted in-degree) against
rank and age in figure to illustrate this.

97

10 2014 2016 2018 2020
Join Date

N

125- ; 125(.
Count Count
6000
& 100 T 100k g 100 4000
50 50 k 50
8§ L I 85 IZOOO
Ql-g 75- i Dl'q—, 75
5&, : 5&.3
8w 50 ; 8o 50
55 : 55 .
o= H = Y. .
= 25 i 3 = 25 - i
s ! .:‘E:"
N R B B of —o-
3 5
a

20
=}
=

Figure 3.26: Scatterplots of players binned into 100 vertical and horizontal hexagonal
bins of player weighted in-degree (mifts received) against rank (left) and age (right)

We can see how, age-wise, the number of players receiving mifts roughly correspond
to the numbers of players who joined at those dates (see figure , with the exception
of the developers on the top left (oldest accounts and most mifts received). If there are
more players of a certain age, it makes sense that players of that age receive more mifts.
Along with the conclusions of the previous subsection, this tells us that age is a weak

reputation indicator.

Figure m (left) on the other hand shows us that we can roughly expect higher-
ranked individuals to receive more mifts. That being said, players who were at one point
reputable and became disreputable can lose their rank and in extreme cases get banned,
hence quite a few rank 0 mift recipients. This is a much stronger indicator of reputation

and social standing.

Finally, in figure [3.27] we colour nodes by modularity class. To do this, we use a stan-
dard technique [11] with a resolution of 1.0 [89]. The graph unfolds into 51 communities,
with a modularity of 0.54 (taking edge weights into account).

98

n
bt

B aNIE N £ . i

Figure 3.27: Mift network partitioned by community / modularity class

The way we have laid this graph out can make it look like there are clusters of satellite
communities which one would expect to have distinct colours, however this is not the case.
These clusters are oftentimes as a result of a few players who send a lot of mifts (which
also has the effect of devaluing their influence). The communities, which are based on
edge weights as opposed to layout position, more accurately reflect the social dynamics

within the network.

We can mostly see that players with similar ranks and age tend to form communi-

ties that can vary in connectedness with each other. This makes sense as players who

99

started playing around the same time would have played together. With ground truth
geographical data, or better yet, granular information on when players on online, we
can additionally investigate if these communities correlate with geography or timezone
in any way. Collecting the data to allow this kind of analysis is a future goal. We can
also see when a mift was sent, so there is an unexplored temporal aspect to this social
behaviour. Similarly, analysis of the purpose of these mifts is also a possibility, as each

have a message attached (for example wishing happy birthday).

We note that while this social network exhibits some characteristics of a small-world

network, it cannot be considered one. Table [3.6|summarises a range of network statistics.

Table 3.6: Summary of mift network statistics

Mean degree 2.512
Mean weighted degree (mifts received) | 3.492
Network diameter 10
Graph density 0.001
Modularity 0.54

Weakly connected components [128] 40

Strongly connected components [128] | 2689

Mean clustering coefficient 0.116
Mean path length 3.67

The degree distribution of the network shows a high prevalence of hubs that make the
network have an overall smaller diameter. The mean path length is also relatively small,
which is typical of a small-world network. However, the average clustering coefficient is
too low for this network to contain clear cliques, which is not characteristic of a small-

world network.

The data we have analysed in this section can be used either for social network
analysis purposes, or in augmenting neighbour selection algorithms, which we focus on in
this thesis. Since there is no authoritative server in a [P2P| network to keep track of these
metrics however, we must also by design ensure that they are not misrepresented. We
draw out from this a design justification and requirement we seek to pursue to augment

our solution, as well as an evaluation requirement:

Design requirement @
lﬂ Misrepresentation of neighbourhood trust /reputation metrics must
be effectively mitigated

100

Design requirement
lﬂ Neighbourhood selection metrics should incorporate rank as a rep-

utation proxy

- Evaluation requirement (7)
m Eigenvector centrality can be used to assign bad actors realistically

to evaluate a network’s resilience to cheaters

3.9 Measuring device heterogeneity

An important consideration in a context that is less of a question with traditional
client-server architectures is that of the heterogeneity across clients/peers. Indeed, in
§2.7.1.3] we explored how some superpeer topologies take advantage of resource hetero-

geneity in superpeer selection. This leads us to ask:

p Is device resource heterogeneity significant?

Unfortunately, it is very difficult to answer this question deeply, as it involves collecting
user statistics to which we simply do not have access to, especially across games. In this
section we therefore only try to establish if it is a factor that must be considered, rather

than to exactly what extent.

To aid us in answering this question, Manyland developers have kindly given us insight
into their own high-level analytics and given us permission to include these here. We have
also included other statistics that reinforce the measurements we have taken throughout
this chapter, including activity over time (figure , by location (figure , area
distribution (figure , diurnality (figure [3.29) etc. Indeed some of this information
can serve as ground truth for inferences we can make without it (e.g. geography based

on an inference of timezone from user activity and other data points).

101

What pages do your users visit?

Page

/

/starbucks
/sanspapyrusfight
finfo-speed-issues
finfo-rift

/3

/5
fepicshowsandbox
finfo-area-lock

/flamefamilypack

Last 7 days v

How are your active users trending over time?

Pageviews Page Value

195815 $0.00
21959 $0.00
12,805 $0.00

3721 $0.00
3,683 $0.00
2,542 $0.00
1787 $0.00
1,591 $0.00
1419 $0.00
1,163 $0.00

PAGES REPORT >

Active Users

Last 30 days v

100K

- 80K

® 7days

0K 1gK
FIT

43K

ACTIVE USERS REPORT)

How well do you retain users?

User retention
WeekD Week1

All Users

100.0%

57%

Oct 20- Oct 26

0Oct 27 - Nov 2

Nov 3 - Nov 9

Nov 10-Nov 16

Nov 17 - Nov 23

Nov 24 - Nov 30

Last 6 weeks »

Week 2

Week3 Weekd Week5

31% 2.2% 1.7% 1.3%

COHORT ANALYSIS REPORT >

Figure 3.28: Manyland.com

devices, and retention

How do you acquire users?

Traffic Channel

29 30

28
Nov
® Diract

e Organic Search # Referral

Last 7 days v

Source / Medium

Referrals

Social

Other

7K

ACQUISITION REPORT »

Where are your users?

Sessions by country

United States - [N
Canada |
Australia |
Brazil |

United Kingdom

0% 20% 40% 60% 80%

Last 7 days v LOCATION OVERVIEW

Google analytics as of 2019-12-05 on pages, user

>

What are your top devices?

Sessions by device

a

Desktep Mobile
77.6% 16.1% 6.3%
11.0% $10.1% 163%

Last 7 days « MOBILE OVERVIEW >

activity,

When do your users visit?

Users by time of day

4pm
6pm
8pm
10pm
sun Mon Tue Wed Thu Fr Sat
I
300 830 1.4k 2K 25K

Last 30 days ¥

Figure 3.29: Manyland.com Google analytics

raphy, and timing

102

as of 2019-12-05 on user acquisition, geog-

Google Analytics Home

Users Sessions Bounce Rate Session Duratior

74K 191K 27.88% 18m 57s

Last 30 days ¥

Figure 3.30: Manyland.com Google analytics as of 2019-12-05 on user sessions

In figure specifically, we can see that 16.1% and 6.3% of users use mobile phones
and tablets respectively, versus the 77.6% desktop users. This is, of course, not represen-
tative of all browser games, but is to be expected of a “desktop-first” game, where the

mobile apps are simply an afterthought WebView wrapper over the desktop game.
Note also that while this is primarily intended for desktop interaction (56.7k by

web clicks), there as still a significant portion of mobile and tablet users (19.9k and
3.64k respectively). This further drives the heterogeneity constraint when designing

topologies, not to mention heterogeneous resources within those categories.

There can be of course browser-based games that are desktop-only, and here the
constraints may be laxer, however the system we design should be general enough to
account for — and take advantage of — this heterogeneity. This information generates

three additional design and evaluation requirements:

Design requirement @

Topology must account for heterogeneous devices with varying net-

work limitations

Design requirement
Topology must account for heterogeneous pairwise links at the net-

work level due to geography

a Evaluation requirement

Evaluation must be over heterogeneous networks

103

3.10 Measuring browser constraints

As discussed in §2| the only way to currently create connections in the browser is via
WebRTC datachannels. This introduces many challenges that would not exist outside
the browser. We have already captured one challenge in §3.9, namely that peers and
connections are very heterogeneous, as they range from desktops to mobile phones, fiber
to 3G. Although WebRTC has been widely supported for years now, the standards have
not yet settled, and using these APIs is widely considered a headache by developers due

to how complex and fragile they are.

Current APIs do not allow sending more than 64KB of data at a time (any more than
this has to be chunked). If a Firefox peer has to send to a Chromium peer, this limit
is 16KB for an ordered and reliable datachannel. We do not consider this a legitimate
challenge, as updates in our context are overwhelmingly much smaller than that limit.
However, there are both soft and hard limits to the number of concurrent WebRTC con-
nections that can exist at any given point in time, and these do carry design implications.
These limits are worsened due to browsers’ inefficient “garbage collection” of dead con-
nections, causing high churn to fill the capacity with zombie connections. We explore

these limitations in further detail within this section.

WebRTC uses [Real-time Transport Protocol (RTP)| which is in turn over UDP, with
some features for media streaming and options for sequencing to detect dropped packets,
bringing it a little closer to TCP than pure UDP. While the underlying RTP layer is

connectionless, WebRTC still requires establishing a “connection” between two peers. To

bootstrap the connection (NAT traversal / UDP hole punching) the peers must perform
a handshake and send metadata back and forth through a signalling server. The time it
takes to do this is not insignificant. It is an industry trope that establishing a connection
between two WebRTC peers is notoriously messy and takes a while for developers to
wrap their head around. Figure shows Mozilla Developer Network’s attempt at

summarising the initial exchange for setting up a WebRTC connection.

104

Peer A STUN TURN Signal Channel Peer B

Who am |17?
4 Symmetric NAT
N
Channel please A
L4
Offer SDP Offer SDP
d Answer SDP 4 Answer SDP
N b
ICE candidate (A) ICE candidate (A)
L4
4 ICE candidate (B) 4 |CE candidate (B)
| |
d Who am 17
|
213.51.61.3:5656
Peer A STUN TURN Signal Channel Peer B

Figure 3.31: The WebRTC exchange “in a complicated diagram” by MDNﬁ

Going through this handshake is far from instant, let alone predictable. For the most
common WebRTC use case, video conferencing, this is acceptable because the connections
last long relative to the time it takes to establish them. For a use case where connections
are short-lived however, using WebRTC is a significant challenge. If not handled properly,

connections are to be severed before they have even been established.

Before we can design a system around this limitation, we must first understand to

what extent this poses an obstacle. We ask:

pl What is the connection establishment time overhead with respect

to pairwise latency?

The setup for the measurements needed to answer this question is simple — we launch
two peers (each running in headless Chromium instances) on the same host that runs
the global signalling server at libfabric.io (more on this later). We then throttled the
loopback interface by different amounts directly using the Linux tc (traffic control) tool.

Chromiums’s built-in developer tools do allow changing network conditions to presets

Shttps://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity

105

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity

such as “Slow 3G”, but these only affect the initial page load (with a bug report that has
been open for many years) and are based on arbitrary definitions of what these presets
mean. Further, they only limit bandwidth and [Round-Trip Time (RTT)|

In order to limit the effects of extraneous variables, we throttle only latency (without
jitter or any temporal probabilistic modelling), and packet loss separately, in order to
examine the relationship between these and the time it takes to set up a connection.
This is useful because the handshake we described above for setting up is convoluted

and requires a lot of back and forth and processing. Our measurements are also run

completely offline — we do not use any public STUN servers. Indeed no [Network Address|

[Translation (NAT)| traversal is necessary at all in this setup (and neither is the use of

TURN servers) as we are focusing specifically on the overhead of the signalling/control
traffic. We acknowledge however that this process may take longer if peers were to use

public STUN servers, or if there are further issues in establishing the connection.

For each degree of throttling to cover different connection qualities, we repeatedly
initiate and sever WebRTC connections, with one second delays between rounds. The
limiting factor is the handshake/signalling back and forth between one peer, the server,
and the second peer. We time this process and plotted the resulting distributions in
figure [3.32

15000
8000

©10000

Time (ms)

6000

Time (

5000

4000

400-

o
S
®

100-

g ° ° R
elay (ms) Loss (%)

30
40

B
Figure 3.32: Connection establishment time overhead against latency (left) and loss ratio

(right)

Here, the relationship between connection quality and the time overhead of estab-
lishing a WebRTC connection between two peers becomes evident. We can see that it
is significant and cannot be ignored at either the design or the evaluation stage of this

project. Later (, we also use these statistics to make establishing connections between

106

artificial peers more realistic, while keeping the simulations lean and minimising the effect

of other variables we are not interested in.

Design requirement @
lﬂ Topology must account for WebRTC connection establishment

time overhead patterns

&, LDvaluation requirement (9
E Evaluations should measure updates lost due to WebRTC over-
heads

There is another, more nuanced limitation to |P2P| connections in the browser. There
are both soft and hard upper limits to the number of connections a peer can have and
reliably maintain. To design a system that keeps these below those thresholds, we must

understand:

pl What are the limits to the number of connections across browser-

s/devices?

The question of connection limits has been shrouded in mystery for the past decade,
with conflicting ambiguous information online. As there are only very few instances
of developers using WebRTC for (small scale) games, and all other use cases are
generally video conferencing, it is a question that is rarely asked. We clear this up
by investigating the limits both experimentally and by checking Chromium and Firefox

source code.

Our experiments on freshly installed browsers across generally cap out at 500 simulta-
neous connections per page. This is consistent across desktop and mobile devices. Unlike

Chrome, Firefox’s maximum is less predictable but generally in a similar range.

As of 2020, Chrome does have an actual, undocumented, hardcoded limit of 50@.
Before this was implemented, there was no limit, going as far back as the WebKit dayf].

The reason this limit is hard to test for however is due to browser issues. Both
Chrome and Firefox have always been bad at the “garbage collection” of dead con-
nections, causing high churn to fill the capacity with zombie connections. Checking

chrome://webrtc-internals (or the Firefox equivalent: about:webrtc) will often show

"https://chromium.googlesource.com/chromium/src/third_party/+/master/blink/
renderer/modules/peerconnection/rtc_peer_connection.cc#144

Shttps://chromium.googlesource.com/chromium/src/third_party/+/
5a7f431061f415177¢c£391511d1331c5bd9b7773%5E%21/WebKit/Source/modules/peerconnection/
RTCPeerConnection.cpp

107

https://chromium.googlesource.com/chromium/src/third_party/+/master/blink/renderer/modules/peerconnection/rtc_peer_connection.cc#144
https://chromium.googlesource.com/chromium/src/third_party/+/master/blink/renderer/modules/peerconnection/rtc_peer_connection.cc#144
https://chromium.googlesource.com/chromium/src/third_party/+/5a7f431061f415177cf391511d1331c5bd9b7773%5E%21/WebKit/Source/modules/peerconnection/RTCPeerConnection.cpp
https://chromium.googlesource.com/chromium/src/third_party/+/5a7f431061f415177cf391511d1331c5bd9b7773%5E%21/WebKit/Source/modules/peerconnection/RTCPeerConnection.cpp
https://chromium.googlesource.com/chromium/src/third_party/+/5a7f431061f415177cf391511d1331c5bd9b7773%5E%21/WebKit/Source/modules/peerconnection/RTCPeerConnection.cpp

a build-up of these that count towards the 500 limit. As WebRTC was originally intended
for video conferencing (where there are relatively few, persistent peers) this issue is much

more significant for our use case as opposed to the primary use case.

These connections persist until they are manually destroyed, or the associated pages
are closed /refreshed. One way to work around this is through one’s own heartbeat imple-
mentation or using the signalling server to notify of peers disconnecting such that other
peers can destroy their connection. The downside to this is that it requires a persis-
tent connection to a signalling server. Since we require this anyway, we can get better

management of dead connections for free.

lﬂ Design requirement

Topology must limit the number of per-peer connections

3.11 Summary

We collected a set of area traces from an fitting our use case for analysis in order to
answer contextual questions. After explaining how we collected these traces and how we
analyse them, we proceeded to identify areas of certain “genres” — static and dynamic.
We showed that these are representative, and that area distribution in our selected [NVE]

match the findings of previous research.

We then focused on player activity over time, where we showed scale and diurnal
patterns, as well as how the relationship between the number of players in an area and
the mean[AO]|density changes based on the type of area. For static areas, this relationship
was much steeper. We also examined occupancy across areas to show the existence and

extent of hotspots, illustrating that avatar distribution is rarely uniform.

We then tackled questions on topology churn. We first looked at churn due to
motion, in the form of idle behaviour across area traces. We qualified this and showed
how it differs across static and dynamic areas, then went deeper to identify any different
player motion classes. We concluded that we can treat all players as belonging to a single

class, and derived a finite state machine that models player motion for each area type.

We expanded this to encapsulate an analysis of player motion by location, showing
that this too is not uniform and heavily dependent on the map. We also introduced a
method for crowd detection in this context to understand crowd behaviour across static
and dynamic areas, concluding that the effect of exploiting this for churn reduction for
[P2P] networks is limited.

108

Since cheating is an important consideration when designing systems for NVEg]
we next examined the prevalence of this. We first presented vulnerabilities we found in our
selected [NVE] the proceeded to scan our dataset for instances of guaranteed cheating. We
went further by demonstrating the ability to cheat at different layers within the context
of this game by implementing a browser extension that enables the user to easily perform
these.

On that note, we examine the rank data from the profiles we scraped, and to what
extent this can be used as a proxy for reputation (for the purpose of eventually using
reputation as a metric in neighbour selection). We compare this against more well
established social network metrics that we extract from in-game gift-giving behaviour.
This tells us that rank can be used as a reputation proxy, while eigenvector centrality
can form a “ground truth” for evaluative purposes. We find that other metrics, such as

account age, are weakly correlated to reputation.

We then establish that heterogeneity is significant from developer analytics, and pro-
ceed to examine the constraints that browsers pose to networks. Here we measure
that the overhead of establishing WebRTC connections is relatively severe and will have
a big influence on the design of our system such that it is resilient to this overhead
as caused by topology churn.

Throughout the measurements made in this chapter, we drew out a set of design and
evaluation requirements from the results of these analyses which answer the questions we
posed all in pursuit of research question @ (see . The following is a collated list of

these requirements.

Design requirements

(O Topology must perform well under static conditions
@ Topology must perform well under dynamic conditions
® Any [ALM] must accommodate a range of [AO]| densities

@ Topologies cannot assume constant activity/density and must accommodate cyclic

changes over time

® Topology must scale to a minimum typical volume of players (replication, connection

limits, etc)
©® Topology must account for concurrent sparse and dense regions
(@ Topology must consider high peer ephemerality

Topologies must account for churn caused by dynamic active times

109

©® Topologies can assume a single player motion class

Topologies cannot rely on crowd behaviour for churn reduction

@ The integrity of messages in transit must be guaranteed

@ Network must be resilient to deliberate dropping/delaying of forwarded packets

@ Misrepresentation of neighbourhood trust/reputation metrics must be effectively

mitigated
Neighbourhood selection metrics should incorporate rank as a reputation proxy
@ Topology must account for heterogeneous devices with varying network limitations

Topology must account for heterogeneous pairwise links at the network level due to
geography
(17) Topology must account for WebRTC connection establishment time overhead pat-

terns

Topology must limit the number of per-peer connections

Evaluation requirements

(D Area size and number of players in a synthetic trace must be set in such a way that
realistic [AO]l densities are emulated

@ Synthetic workloads must emulate realistic occupancy distributions

(® Synthetic traces must reflect peer ephemerality

@ Synthetic traces must emulate realistic active/idle states

(® Synthetic traces can assume a single player motion class

6) Performance must be measured under workloads with some uniform motion flow

@ Eigenvector centrality can be used to assign bad actors realistically to evaluate a

network’s resilience to cheaters
Evaluation must be over heterogeneous networks

© Evaluations should measure updates lost due to WebRTC overheads
In the following chapters, we seek to meet these requirements in design, implemen-

tation, and evaluation, with the confidence that these are founded on strong empirical

justification.

110

Chapter 4

P2P Update Dissemination

4.1 Overview

In the previous chapter, we have presented an extensive range of measurements that

capture [Networked Virtual Environment (NVE)| browser, and network requirements. In

a nutshell, our system must be adaptive, scalable, secure, and browser-fit.

In this chapter, we describe the design and implementation of our system, as well as
the libraries and APIs we released, driven by the requirements and constraints of the
previous chapter. We begin by outlining and justifying our high-level approach, then

describe the system architecture and algorithms in detail.

4.2 Decentralisation: to what extent?

[Peer-to-peer (P2P)| topologies either need to form emergently, or have to be computed

somewhere. It is tempting to try and distribute topology computation too, as a com-
pletely distributed system has a certain purity to it that can be attractive to a systems
engineer. We must however be careful not to decentralise for the sake of decentralisation,
but to instead motivate this for every component of the system. As we have discussed in
§2.3 applying the main tenet of [Software-Defined Networking (SDN)| to a [P2P| context,

and separating the control and data planes, is uncharted territory with a lot of potential.

We have alluded to the use of a “signalling server” in the previous chapter. In its
simplest form, this is just a communication channel that is used to bootstrap WebRTC
connections, and it cannot be avoided. It usually also acts as a lobby or directory of peers
that can be connected to — akin to DNS for [P2PL

111

Right off the bat, we have a system component that cannot be distributed. Indeed,
the same holds true for any system. Take for example BitTorrent files. While
the actual file transfer is certainly decentralised, actually finding peers relies on trackers
servers, which the torrent file points to; the DNS of file sharing. Incidentally, these tracker
servers are usually how peers downloading copyrighted content off of public trackers get

in trouble.

Through content-based addressing (in the case of BitTorrent: magnet links and
(tributed Hash Tables (DHTSs)|) it is possible to decentralise peer discovery, and we discuss

this in more detail in the coming sections. However, it is not possible to decentralise the
discovery of these URIs (in the case of BitTorrent: torrent search engines). Blockchain
use cases (e.g. the Ethereum Name Serviceﬂ) or distributed storage (e.g. IPFS’ InterPlan-
etary Name SystemE[) are all use cases that have different incentives besides availability,
such as preserving privacy and/or mitigating censorship. These are incentives that do not

necessarily apply to and therefore do not warrant the same level of decentralisation.

This begs the question: is it truly necessary to decentralise every part of an [NVEJ? As
discussed in §2| we already know that 80% of traffic is non-critical state updates (e.g. chat
and position updates) [87]. If our goal is to distribute update dissemination such that this
traffic does not flow through a centralised server, to raise performance and reduce cost,
then it would be foolish to push for decentralising any more than that, especially without

a clear motivation and introducing a litany of design and architectural challenges.

We emphasise that the goal here is not decentralisation for the sake of decentralisation.
We already know that we need at least one server for control and orchestration, so we

can add to that critical update forwarding (low-traffic) and other control layer activity.

There is one such control layer activity that many existing solutions try to distribute:
neighbour discovery. There is no reason that our signalling server cannot also compute
the topologies and tell the peers how to connect. Meanwhile, there are many reasons not
to distribute this function; challenges in coordination and mitigating against bad actors
to name a few. The information used to make these computations is, of course, stale due
to the latency between peers and signalling server, however it would be variably stale if
distributed, and the signalling server at least has a full overview of all peers, so it can

send more comprehensive control messages.

We later verify in our implementation that signalling server control traffic is indeed
negligible compared to update traffic between peers, as expected. Incidentally, centralis-

ing topology computation also has positive commercial and intellectual property impli-

'https://ens.domains/
?https://docs.ipfs.io/concepts/ipns/

112

https://ens.domains/
https://docs.ipfs.io/concepts/ipns/

cations, although these are tangential to the academic implications. We do not consider
this as an element of our system design per se (which we present in the next chapter), as
the focus is more on update dissemination, but it is still important to consider the effects
of centralising topology computation. This raises an important question however: how
frequently should topologies be recomputed?

We can attempt to answer this question by first finding out how frequently the metrics
that neighbour selection depends on change, primarily motion. Figure [4.1| shows the
distributions of movement intervals across areas. This data was collected by simply

logging the inter-arrival times of position updates from any peer.

0.1251
Area
0.100 [0 Dynamic
] Static
-.0.075
:
A0.050
0.0251
0.000+

0 30 60 90
Movement intervals (ms)

Figure 4.1: Density plots of movement intervals (between all peers) across areas, capped
at the 90" percentile

At first glance, this does not bode well. Especially for the dynamic trace, movement
is frequent enough that we are on the order of a few milliseconds. Imagine a theoretical
“worst” topology ever, where a single tiny motion causes all existing connections to sever
and an entirely disjoint set of connections to be established. Figure [4.1| would imply that
if the peers do not figure out the new topology in a matter of milliseconds, the topology

is almost guaranteed to be very sub-optimal consistently.

If we consider that topology updates are actually very localised and that peers do not

care about those outside of the topology outside of their own [Area-of-Interest (AOI)| then

this requirement becomes more relaxed. In §3.4) we have established that update intervals
at the dynamic area are around 700 milliseconds. Also, in we have established that

113

can be up to around 20 players dense. This means that in the worst case, where
these updates are perfectly spaced out out-of-phase, we can still have movement intervals

of up to 35 milliseconds.

Fortunately, movement does not necessarily mean that a topology needs to update.
This is naturally dependent on the topology — a completely connected network only
needs to update when players spawn/despawn for example. In the system we present in
the next chapter, topology update interval is treated as simply a parameter that can be

configured.

In §5| we investigate this in further detail however in order to determine what a
good value for this parameter is. It is conceivable that this parameter can be dynamic;
a function of churn measured in real time and adapt to reduce the number of connec-

tions/disconnections at every recomputation. This is surely a future research goal, but

currently too tangential to the focus of this thesis on [Update Dissemination (UD)]

4.3 Architecture

From the reasoning of the previous section, we decide to centralise topology computation.
We are of course limited to WebRTC as this is currently the only way to communicate
P2P|in browsers. Fundamentally, we have two logical components: the signalling server

and the peer. Figure [4.2| shows these components at a high level and lists the roles of the

signalling server.

Signalling Server

N e Acts as a directory/lobby for peers

O O—> e Bootstraps WebRTC connections between peers
- b e Acts as a fallback proxy for peers that cannot
Metrics establish a WebRTC connection

’ e Has the authority blacklist peers from networks
that use this signalling server

e Collates peer metrics

e (Re)computes network topologies

e Dynamically instructs peers which edges to
(dis)connect and/or (de)activate

Control Messages

g J

Figure 4.2: Our high-level architecture listing the roles of the signalling server

114

The default roles here are what we have described in the previous section; enabling
peers to connect. We get to control how these peers connect “for free” by having the
signalling server double as a topology orchestrator. Based on information that the server
gets from peers over time, it can compute topologies and dynamically instruct individual
peers which other peers they should connect to or disconnect from, as well as which
connections should be (de)activated. We will go into more detail on this in the next

section.

For some topologies, collecting metrics is entirely optional. Some topologies can also
be very static, so once a peer is connected, they do not receive any subsequent control
messages. For certain use cases, all peers join at once (for example, a game match between
a fixed number of players) and in cases like this, once the signalling server has connected
these peers, the control channel between peer and signalling server can be severed entirely.
Usually it is still beneficial to keep the connection between peer and signalling server
alive however, as the signalling server can much more accurately inform peers of a peer

disconnecting (see the end of §3.10| for more information on this phenomenon).

We would like to stress that the browser libraryﬁ (which we discuss in more detail
later), that we have built as a result of this work, is completely topology-agnostic. We
implement a range of common topologies that can be configured based on developer
needs, and only include our own as one of these options. Indeed, by default, our method
only kicks in when more than eight peers are connected to the same namespace — below
that, the topology is completely connected. We also allow developers to drop in their
own custom topology computation functions. The following sections describe our own

design, then we revisit the browser library and signalling server API in §4.8

4.4 Routing within our system

It is important that we discuss the life cycle how messages are handled on top of the
overlay network topologies that we build. In this section, we will make some references
to topologies that we have implemented and will describe in §4.8.2l This is due to the
fact that can vary somewhat from topology to topology, but for the most part, it is

built on the same flooding-based approach across topologies.

In §2.7.3] we discussed different routing strategies that can apply to
[Layer Multicast (ALM)| For structured networks, such as [DHTs, these are generally

straightforward — once routing tables have been constructed, the obvious routing

3http://libfabric.com

115

http://libfabric.com

scheme is to send packets to the peer with the hash closest to the target. For unstructured
networks, there are a range of geographical routing protocols relying on a myriad of

heuristics that can be used for single-path routing.

In a [UD] context, standard flooding is the default strategy. It would make no sense
to sequentially unicast updates to individual [AOI| peers. Indeed updates cannot be en-
crypted due to this because these systems rely on receiving updates and forwarding them
such that all peers that an update crosses paths with get updated. We note that more
advanced flooding strategies exist |125] but these are beyond the scope of our work. We
describe how messages are routed over the topologies and systems we implement when
it is relevant, although often topologies only allow specific paths, making the notion of

routing redundant.

To better explain how updates are disseminated in our networks, we will first introduce
some terms. When a node either receives or emits an update, that update follows a certain

life cycle. We summarise this life cycle in figure .3

An update can either be generated by a peer, or have been received by that peer from
another one. If it was received, the peer first checks if it is outdated, i.e. if the peer has
already received newer information in the past. If it has, that update is ignored. This
also prevents broadcast storms caused by cycles in the network, as peers will not forward

an update they have already seen a second time.

New updates are accepted and the local state of that update’s originating peer is
modified. Topologies that do not require update forwarding (e.g. Complete or AOI)
stop at this point (the dotted arrow in figure |4.3). These one-hop topologies can often
send updates over suboptimal routes as path A-B—C may be faster than path A-C.
All other topologies check to see how many hops the update has already made. If this
exceeds a threshold, the update is once again dropped. This is common for flooding-based

propagation to prevent endless propagation.

We set the threshold at 3 hops as a precautionary measure, but also log when an
update is dropped as a result of this (update age). Most topologies generally have an
upper-bound that is either hard (e.g. Superpeer topologies) or soft (e.g. Ring topologies).
Theoretically, this threshold can be changed in real-time as the number of peers changes,

however this is currently beyond the scope of our research.

Following this, the update is cast, as are any updates that are emitted by the peer
itself. Recall that we are dealing with [ALM] so after this point, the update is replicated

and sent to multiple recipients.

116

(Emit)

Receive

Outdated?

Ignore

Accept

hops = maxHops?

Forward

l

> (Cast

Connection
not ready?

Drop

Figure 4.3: Life cycle of an update

117

There are some constraints on which peers can even be sent to that generally apply

to all topologies. These are:

e Peers do not send updates to themselves

e Peers do not send updates back to where they came from

e Peers do not sent updates to the originator

e Peers do not send updates to unconnected peers

e Peers do not send updates down inactive links

e As long as the above conditions are met, all traffic to superpeers is allowed

e Peers do not send updates to peers outside of the originator’s [AO]] for topologies

where this is not allowed (all topologies except Ring ones and Ours)

e For topologies where the above constraint holds true, but in the rare case where
a peer does not know what the originator’s last known position is, the update is

dropped

The last condition will only happen if a non-position update (e.g. interaction or chat)
precedes the first position update and does not encode within it the originators position,
therefore making it impossible for the forwarding peer to determine if the recipients are
within the originator’s [AOIl Updates are also not sent if the WebRTC connection is still
in the process of being established, which we later discover can take a significant amount
of time. There is no point in buffering updates as they are so short-lived that, by the time
this queue is flushed, they are already irrelevant. The final point in the life cycle at which
an update may be dropped is when it has been transmitted but dropped due to packet
loss. We include this here as we will refer back to this figure in of our evaluation,
where packet loss is artificially induced with a deterministically random probability based

on a predefined loss ratio.

4.5 Our algorithm

In we have established that most existing solutions generally take the same approach
— completely connecting peers in a certain virtual[AO]} This means that the peer network
topology is dependent on how these are defined, which in turn is usually dependent

on virtual peer positions.

118

We approach this problem from a different, general angle. In this section, we begin by
defining the problem we solve more explicitly. Then we formally delineate the details of
our solution while justifying our design decisions, and how our method can be extended,

throughout.

In chapter [2] we also established how most existing solutions only look at

|[Environment (VE)| user positions for |Interest Management (IM)| and therefore how the

peer network topology is computed. Our solution also considers positions, however these
positions are not raw [VE positions, but rather n-dimensional coordinates that are com-
puted based on a variety of default factors, which we call distance metrics. We select

four initial pairwise metrics, which we will unpack in more detail shortly. These are:

Virtual distance — the virtual distance in the [VEl between two avatars

Network latency — the network distance between two peers
e Trust score — a “reputation” distance between two players

e Time connected — the time two peers have been connected

As we focus on distributing update dissemination, we relegate peer network computa-
tion to the centralised signalling server as discussed earlier. The data transmitted to do
this is comparatively low in volume, however our architecture can be fully distributed in
the future, in a similar fashion to Vivaldi [28]. In current architecture, the above metrics
are collected by a coordinating server which then computes a topology and instructs peers

on which other peers to connect to or disconnect from.

The above metrics can be extended to include arbitrary factors, however this has

some limitations. The first limitation is that these metrics have to satisfy the triangle

inequality. This is often assumed, for example with [Network Coordinate Systems (NCSs)|

such as Vivaldi 28], although practically this may not be true, simply because of sub-
optimal routing on the internet and heterogeneous routes. For example, with nodes A, B,
and C fully connected, the path from A to C' may be faster through B than a direct path.
We investigate how we can mitigate this issue through increasing the dimensionality of

the final coordinates.

The second limitation is that the metrics have to be pairwise/undirected. A simple
distance measure is the same both ways, however a trust score is subjective (and again
may violate the triangle inequality). In order to overcome this limitation, we combine

directed metrics by using their mean, max, or use a different statistical average depending

119

on the metric. These two limitations also enable important optimisations which we discuss

later.

Figure illustrates the steps of our method from the collation of distance metrics
to instructing peers to update their connections. In this section, we discuss each step in

this pipeline in detail.

Peers (Signalling Server A
Tik
Fuse d (b) Update
Metrics [7] NCS
Activate| o Connect | Compute
Edges | Redundant| MST
_ J

Figure 4.4: Our peer network topology computation pipeline

4.5.1 Distance metrics used

Each of the above four factors are computed on a per-edge basis. In this section we

describe how we compute these.

4.5.1.1 Virtual distance

To capture the first factor, we calculate the euclidean distance between the VE positions
of nodes 7 and j, which we call z; and z; respectively. These coordinates can have
an arbitrary dimensionality, M (usually 2 or 3), so we denote the dimension as m, i.e.
x; = (Ti1, Tiz, ..., Ting). We refer to this variable as d,(i, j) defined in equation

dp(27]> = Z(J}zm - Cij)Q (41)

120

4.5.1.2 Network latency

To compute the latency factor, we simply divide the round-trip time between a pair of
nodes, rtt;; for nodes ¢ and j, by two. This does assume that the latency one way is the
same as the latency back, which is not necessarily true practically, but this is common

assumption that is made in related work [28]. We refer to this variable as d;(i, j) defined

in equation [4.2]

di(i,5) = rtti;/2 (4.2)

4.5.1.3 Trust score

Each node ¢ maintains a trust score for every other j denoted as t;;, where 0 <¢;; < 1. ¢;;
is better thought of as as distrust score, as we invert it here to save the step of inverting
it later (since more trust is analogous to a smaller distance between peers). We initialise
this directed trust score at 0, trusting peers by default, and it changes dynamically over

time.

Trust is computed automatically based on how frequent a peer sends an incorrect
state. As peers have no way of telling if another peer is behaving maliciously or simply
have a corrupted game state, we compare state to that sent by other peers and mark the
majority as “correct”. If a peer continues to bad state, then they become less and less
likely to be kept as a connection, or have new connections initiated with them. This can
be overridden by a peer manually marking another peer as untrustworthy (e.g. through
higher-level observations such as game-layer cheating) which can set this factor to 1 or

an extremely high number, effectively associating a huge cost to connecting to this peer.

Our system is versatile enough to allow other trust/banning mechanisms to be encoded
within it in a similar fashion (such as sharing trust scores with other trusted peers),
however the trust metric we describe serves as a basic proof-of-concept that encoding

application-critical, directed factors into the topology computation decision can be done.

Note that ¢;; is not necessarily equal to t;;, making it a directed factor. To transform

R
it into a pairwise/undirected factor, higher distrust takes precedence. This makes sense
intuitively, as it allows peers to override malicious peers who try to artificially paint

themselves as more trustworthy. We call this transformed variable d;(i,j) defined in
equation (4.3

di(i,j) = max{t;;, t;;} (4.3)

121

4.5.1.4 Time connected

Finally, a common problem that has plagued previous work is the frequent switching of
connections. Practically, there is a cost associated with connecting to a new peer, as
the initial handshake adds overhead latency. Some approaches have tried to minimise
this overhead by attempting to create topologies that are much more stable over time
as peer positions change [14]. There has even been work that characterises the way that
players move in a [VE]in order to anticipate how this motion will affect churn, and this

information can be used to augment how the network topology is computed [67, [91].

While both of these areas are important, the first can be applied to any system that
uses Delaunay triangulation, so it is not an alternative to our system but a potential
future avenue of optimisation, and the second is very application-specific. We instead
use concepts from the load balancing space to solve this problem in a simple, general
way. It is not uncommon for load balancing systems to adopt a notion of “stickiness”
when routing, in order to add some temporal consistency to links and prevent sporadic

switching between two similar queues or sinks.

We therefore capture the time a connection between two peers has been active, s;;,
as an additional factor when computing our network topology. This is a straightforward
pairwise measure (identical to s;;), however its effects should not be linear, as it makes
more sense to have a kind of exponential backoff where new connections are more likely

to stay and older ones are more equivalent.

As such, we use a simple sigmoid function, the hyperbolic tangent, over the time
connected, so that it can be treated as a linear factor in the next step of the process.
This can be adjusted to make the connections more or less “sticky”, so we include the
constant ¢, to denote this. This constant controls how fast a connection converges in
stickiness to other older connections, not how much the stickiness variable as a whole
affects the topology computation. A lower constant means that this will happen faster

(less sticky).

We also reiterate that these factors can be the result of arbitrary computation that

should affect the topology in some way. We call this “stickiness” variable ds(7, j) defined
in equation [4.4]

Cs

dy(i,j) = tanh (S—J) (4.4)

Finally, we define the full set of pairwise distance metrics as d(i,), which for our

implementation is made up of {d,(7,7),di(4, j), d (4, j), ds(i, 7) }, but can be extended ar-

122

bitrarily. For all these metrics, where ¢ == j, the value is 0, and the pairwise/undirected

limitation will mean that swapping ¢ and j will yield the same value (e.g. d;(i,7) ==
di(j,1))-

4.5.2 Building an appropriate coordinate system

As our distance samples may be sparse, we simulate a force-directed graph to fill in the
missing edges. Given a graph with weighted edges, we can simulate a spring system that
computationally /iteratively moves nodes to optimal positions with minimised energy.
The nodes position themselves in such a way that missing samples can be estimated

through euclidean distance. This is equivalent to Multidimensional Scaling[27].

Crucially, this is done for each distance metric, not for the final combined metric.
This is because different metrics may require different simulation parameters based on

their volatility.

In the case of network distances, our model is very similar to Vivaldi [2§], with some
minor differences for nodes to be positioned more uniformly. In addition to this, we
do not limit the computed coordinates to just three dimensions — while this may be
sufficient for that are close to physical coordinate systems, other coordinate spaces
may naturally require a higher dimensionality (especially to mitigate triangle inequality

violations).

This can be expressed as an optimisation problem, where we seek to minimise the
energy of the system based on a cost function that takes the different factors into account,
however describing it as such can be quite indecipherable. In this section, we therefore

aim to explain it in a more intuitive manner.

Whenever a new node is sampled, it is initialised with a random m-dimensional co-
ordinate. Recall that we have defined our distance metrics as dj(i,j) for metric k£ and
nodes i and j. For every sampled edge, we use this value as the resting length of a spring
between these two nodes. Let d.(i,j) denote the euclidean distance between two nodes.
J is the magnitude of the displacement of the spring from its relaxed/resting state. We
calculate the restoring force vectors F; and F} that this spring exerts on each node at any

given point in time (equation using Hooke’s Law.
d = de(ihj) - dk(lhj)

V=1 — (4.5)
E = —Fj = —O‘(;f)

123

Here the constant o denotes the spring coefficient, which is related to spring “stiffness”
and controls how fast a spring will reach its final state. Normally this is called k, but we
already use that as a distance metric placeholder. The unit vector of v simply gives us the
direction of the displacement, and the result is inverted because the restoring force acts
in the opposite direction of the displacement. Each node can perform this calculation

independently for each of its neighbours.

We also use Coulomb’s Law to give each node, which we treat as particles, a small
“electrical” charge. This is important specifically due to the potential sparsity. This is
analogous to the universal law of gravitation, so another way to imagine it is each node
having a negative mass and a negative gravitation, like repelling magnets. Crucially, the
force decreases quadratically with distance, as the inverse square law applies in all cases.
Equation describes the resulting forces.

V==T; —
_ QiQyo (4.6)
- de(i,5)?

Here Qv and @) are the charges on each node. For our purposes, all charges are the

Fi=-F,

same, so the expression Q;Q; can be replaced with a global charge becoming Q?. We also
disregard Coulomb’s constant (an additional coefficient) from the equation completely,
as “charge” is just a metaphor here, and the particles are not actually moving through a

medium.

We also make sure that the distance between two nodes is never zero (otherwise
theoretically the resulting force is infinite) by adding a small distance if that is ever the
case. Similarly, we apply a maximum to the force that can be applied at any timestep.
We assume a constant timestep, however this would work with a dynamic timestep too

as long as the forces are multiplied by the elapsed time since the last simulation step.

An immediate observation is that adding these charges breaks the distributability of
this algorithm. This is true if the simulation calculates the effect of the charge of one
node on all other nodes. We therefore limit the effect of charges by [AO]| radius. As a
result, any given node only needs to know about its neighbours and the nodes in its [AO]|
for this algorithm to be distributed.

This is a fair simplification to make as (in part due to the inverse square law) distant
nodes exert very little force on a given node, just like when simulating the motion of
planetary bodies, astronomers will not take into account the negligible gravity of far

away stars. It also would not scale at all if every node had to perform these calculations

124

with global knowledge of every other node for virtually identical results.

Finally, we add the spring forces to the charge forces to compute the final force acting
on a node, and we treat that as an acceleration. We do not include a notion of “mass”
(or rather, all nodes have a mass of 1), so the extent of this acceleration is controlled
indirectly by the constants ¢ and (). We apply these accelerations to the nodes every
timestep, and over time, the graph will converge to a state with minimized energy (where

the nodes move very little), after which we stop the simulation.

In other words, the code for this physics simulation involves simply repeatedly iterat-
ing through all nodes, calculating the sum of forces acting on this node (via its edges and
nodes), and updating its position in this semantic space based on the acceleration
resulting from this force. In the distributed variant of this algorithm, each peer would
perform its own calculations and update its own position. The simulation stops when it

converges on a stable state (i.e. the nodes stop moving or move exceedingly little).

We repeat the simulation every time a new sample is made, which corresponds to
a new spring. Since the “disturbance” to the spring system is only ever one node at a
time, it converges in very few iterations. In Vivaldi, smaller values of ¢ (a constant that
controls the step size for moving nodes) are preferred. Other than for network distances,
we generally require larger values for the equivalent — our graph coordinates need to
be more dynamic because our collection of metrics has the propensity to change much
more rapidly, meaning the graph coordinates need to reflect that much more aggressively.
Meanwhile Vivaldi, which only focuses on network distances, tends to deal with much

more static spaces, as network distances on their own change slower or are time-averaged.

We select constants that are as high as possible, such that the simulation can con-
verge quickly, without causing the system to become unstable. Here “unstable” means
a system that is too responsive and springy for a timestep that is too large relatively,

where positions can end up oscillating indefinitely and never converging for example.

The last step is to normalise and combine the metrics we have described into a single
metric that we can use as edge weights for constructing our topology. To do this,
we apply a weighted average. Each weight effectively dictates how much influence single
metric has on the positioning of a node within our final combined coordinate system.
These weights are referred to as wy in equation and map directly to di(,j) for K
weights/metrics. These weights are normalised. The final combined metric, the edge

cost, we call d(i, 7).

125

(i) =3 widi(i,)

K
where E w, =1
k=1

It is also important that this coordinate system is euclidean. Previous work has shown

(4.7)

the advantages of using non-euclidean models, however this would make our system very

difficult to scale, as we rely on this property when computing spanning trees in the next

step. [Euclidean Minimum Spanning Trees (EMSTSs)| allow optimisations in calculation

that brings our method to a level of efficiency that is practical.

4.5.3 Computing topologies

The final step in our process is computing a topology that fits our constraints over the
nodes with the computed coordinates. This is an NP-hard problem, so our solution is a

heuristic which we later compare to optimal solutions found through brute force.

Seeing as sparsity is a strong requirement for networks in the browser, we start

by computing the provably most efficient configuration: the [Minimum Spanning Tree
Here, our edge costs correspond to d(i,). Over time, we compute the edge costs

for every pair of distinct nodes and build a complete graph of edge costs. When we

physically connect two nodes in the network, we say that the edge has been activated.

An[MST]creates many bridges however, which makes our network very fragile; a single
node disconnecting or a single link failing can disconnect the network graph. To remedy
this we add connections using algorithm [I] Here, peers is a list of peers, each containing

a list of edges, each associated with a cost d(i, j).

The result is an MST network with added connections to bring the k-edge-connectivity
of the network above a certain predefined threshold. This is not optimal, but we compare

the resulting network to bruteforced optimal topologies.

We modify half the cost of edges that connect two under-provisioned peers, as activat-
ing these kills two birds with one stone by adding an edge to two nodes at once. We also
recognise that a minimum k-vertex-connectivity may be a constraint that more closely

maps to resilience, and we intend to include this in our algorithm in the future.

126

Data: peers

Input: minK, the minimum edge-connectedness

Result: A network that is efficient and resilient

First, compute the MST using Prim’s algorithm and activate MST edges;
foreach peer of peers do

/* Ignore adequately connected nodes */
if peer.activeEdgeCount < this.minK then

/* Half cost of edges connecting 2 weakly-connected peers */

foreach edge of peer.edges do
if edge.peerA.activeEdge Count < minK and

edge.peerB.activeFEdgeCount < minK then
‘ edge.modifiedCost = 0.5 * edge.cost;
else
‘ edge.modifiedCost = edge.cost;
end
end
Sort peer.edges by modified cost;
/* Activate cheapest edges to adequately connect this peer */
foreach edge of peer.edges do
if not edge.isActive then
activate edge;

if peer.activeEdgeCount > minK then
| break;

end

end
end

end
end
Algorithm 1: Our heuristic algorithm for adding resilience to peer networks

It is also trivial to modify this algorithm to favour nodes that are less connected. Sim-
ilarly, we can add an upper limit to the number of edges a node can have. The reason for
both of these is to ensure that our topology is well within browsers” WebRTC connection

limits. We later find however that this is practically unnecessary and redundant (§5)).

4.6 Pre-connection outside of AOI
In §3.10[we emphasised the WebRTC connection overhead and how this makes dynamic

incredibly difficult in the browser. In addition to our longevity distance metric, we

have found a way to minimise the effect that this has.

127

We know four things at any given point in time: (i) the maximum movement speed
of a player, (ii) the radius, (iii) pairwise latencies, and (iv) the expected WebRTC
connection establishment time overhead distribution (via the measurements from §3.10)).
Our solution to do away with these overheads entirely is to pre-connecting with peers
within a margin outside of an to “pre-heat” connections, and hot-swapping them in

and out. This margin is based on those four factors.

The calculation is straightforward. The connection “cooldown” for a pair of peers at
any given point in time is a function of their pairwise latency. We take this cooldown time
and simply multiply it by the maximum speed of a peer. This tells us how much distance
a peer can cover in the worst case scenario while a connection is being established. We
take this value and double it, as motion is relative and the actual worst case is peers
running at maximum speed towards each other. Then we simply extend the player’s[AO]|
by a margin equal to that distance, creating an extended [AOI] in which we pre-connect

any peers that happen to cross it.

The obvious disadvantage to doing this is that we end up with many more connections
than if we limit them to only within the [AOIl Some of these connections are never even
used, as the player might decide to move in the opposite direction after all. It is possible
to mitigate this by taking into account which direction a player is facing, or predicting
their motion based on past motion, but we have found this to be unnecessary. This is
due to the fact that our topology is already as sparsely connected as possible and that
we perform better than other topologies in this regard, let alone stay under browser

thresholds. In §5| we show just how effective this technique is.

4.7 Mitigating cheating

Our P2P approach introduces other non-negligible challenges. In a client-server context,
there is a stark trade-off between how much game logic the server carries or attests (which
increases server costs) and players’ ability to cheat by modifying the client. An example
of this are games where all physics simulation is done client-side to minimise lag and a

player can modify a client to manipulate their position and clip through solids.

In a peer-to-peer context, this problem persists between peers, however the cost of
validating game states falls to the clients. As no authoritative servers exist, peers have
to decide either manually or autonomously to disconnect and/or blacklist cheating peers
by maintaining an array of IPs of past offenders seen first-hand. We have captured these
requirements in

128

On the spectrum between MST and completely-connected, we cannot therefore simply
go for MST as it is more efficient. We must introduce redundant connections for two
reasons: (1) resilience and (ii) accountability. Figure [4.7 shows a visual example of this
where peer @ relies on just peer @ for updates, as peer @ has a good connection to the

left side of the network. We add redundancy by connecting @ to @ also.

For the first, it is imaginable that a node goes offline for whatever reason, and a new
MST must be computed. To avoid the overhead and potential lag in repairing the peer
network, redundant connections are an advantage. For the second, if a peer relies on only
one other peer to update their global game state, that peer can spoof the game state.
While every peer can perform their own validation for impossible game states, or states
that imply cheating, there are edge cases where this becomes less obvious when a peer

receives realistic but divergent states from two or more other peers.

It is therefore important that we work in a mechanism for preserving the integrity
of messages as they are forwarded between peers. An obvious approach would be to
encrypt messages end-to-end between peers. There are not necessarily just two “ends”
here however, as the peers that forward these updates need to inspect the information to
update their own states. States are multicast and propagate through the network rather

than being iteratively unicast.

We therefore instead add a 2-byte signature fingerprint to every message. These
messages are signed using Ed2551£ﬁ which is well known to be incredibly fast (hundreds
of messages per second on modern hardware) and secure. Public keys are provided by
the signalling server while bootstrapping WebRTC connections together with other peer

metadata.

Is a 2-byte signature fingerprint in any way resistant to preimage or collision attacks?
Definitely not, but we have the advantage that these messages are incredibly short-lived,
on the scale of milliseconds, and become obsolete when the next message is sent. The
high frequency of these messages makes any kind of bruteforcing pointless and the class
of attacks by forwarders that modify the messages are effectively mitigated, meeting our

requirements on cheating.

4.8 Implementation

We implemented the above system in two parts. The first is the signalling server, and the

second is the client/peer library which runs in the browser. Additional documentation

‘https://ed25519.cr.yp.to/

129

https://ed25519.cr.yp.to/

for our browser library and signalling server API is available at http://1libfabric.com.

We have already used this library to create three real-time [P2P| applications:

e Camwire (https://camwi.re) — “The Pastebin of video conferencing”; focus on
ease of use (no installation or login) and any room can simply be created /joined by

navigating to https://camwi.re/some-room-name
e Drawire (https://drawi.re) — Collaborative whiteboard, similar to above

e Filewire (https://filewi.re) — file sharing

These applications are tangential to this thesis, and only exist to demonstrate the
practicality of our implementation. are however a fundamentally different use case
and have vastly different requirements to other use cases. For example, video conferencing
has historically been small-scale (one did not expect to have hundreds of participants in
a video call) and have much lower churn. This landscape has however been rapidly
changing as of the COVID-19 pandemic. In the past, supernode architectures have been
successfully used in this context, while these do not make sense in the NVE] context as we
explore in the next chapter. Even in the large-scale live-streaming/broadcasting context,

the literature is comprehensive and architectures optimise for different factors.

Our library has not yet seen widespread practical use, primarily because we have only
very recently released the first public version. In our system evaluation, we focus on this
implementation however, in order to demonstrate that it meets the requirements we set
out to satisfy. In this section we describe this implementation in detail, from both the

client-side as well as the server-side.

4.8.1 Signalling server

For uniformity, our signalling server is, like the client library, also in Javascript (Nodejs)
with a handful of pure-nodejs dependencies. Our implementation is open source under
an MIT license and available on GitHub] A publicly accessible deployment of this lives
at https://sig.amar.io|for testing and https://libfabric.io for production. At the
time of writing this thesis, there is no authorisation or API key system on top of the
signalling server endpoints, so we simply prefix namespaces (which we describe shortly)
with the domain/origin to separate applications. Future plans include augmenting the
signalling server API to require developer API keys. This is of low academic importance,

but necessary if this work were to ever be monetised in the future.

Shttps://github.com/yousefamar/p2p-sig-serv

130

http://libfabric.com
https://camwi.re
https://camwi.re/some-room-name
https://drawi.re
https://filewi.re
https://sig.amar.io
https://libfabric.io
https://github.com/yousefamar/p2p-sig-serv

We use the built-in Node.js http module along with socket. ioﬁto create a WebSocket
server on a configurable port (8090 by default, but can be changed through the PORT
environment variable). Peers connect to this server and the server sends them a unique
ID on successful connection. Peers should wait to receive this ID before any subsequent

communication with the signalling server, or else they will be ignored.

4.8.1.1 Room namespaces

Peers can join namespaces, which we refer to as “rooms”. These are slightly differ-
ent from what one would understand as a room as they can be nested. The room
“tree” is delimited by slashes, not unlike a directory tree. For example, peers in the

/io.amar/players/moderators room are also in the /io.amar/players room.

At the top level, rooms separate applications from one another, but even within the
same application, developers can use these namespaces to further segment their users
in some way. An example of this would be would be to create distinct areas/zones (we
touched on the prevalence of this in or for example add an extra layer on top
of default topologies. For example, it is not uncommon for games to use grid-based
where peers in one cell are interested in peers in surrounding cells, and they can join and
leave these cell rooms as they enter and exit. Peers can also listen for events higher up in
the namespace path (for example the room for their wider 3x3 grid cell area) or indeed

global, game-wide events.

4.8.1.2 WebSocket events

The following is a description of the WebSocket events that the signalling server listens

for.

sdp / ice — [Session Description Protocol (SDP)|and [Interactive Connectivity Estab-|

llishment (ICE)| messages that are forwarded to a user ID defined in the event body. If

the destination ID is not defined or invalid, the message is ignored. These are specific
to the WebRTC handshake (see figure in §3.10)). The details of WebRTC are out of

scope here, but we include these for completeness’ sake.

join — a message to join a room of a room ID defined in the event body. These rooms

can be arbitrary strings. If a room does not exits, it is created. If the room ID is not

Shttps://socket.io/

131

https://socket.io/

defined, the message is ignored. When joining a room, a peer also joins all rooms within
which this room is nested. In the completely connected topology mode (which we will
discuss shortly) all peers in the same room are notified when another peer joins the
room (the event is simply forwarded/broadcast to those peers). Otherwise, a topology
recompute is triggered. The event body also includes peer metadata such as ID, initial

state (position), and public key (for verifying the integrity of updates).

hail — a message from one peer to another peer to notify it of its existence. The
destination user’s ID is defined in the event body. If the destination ID is not defined
or invalid, the message is ignored. This message is sent on receiving a join event and
prompts the joining peer to initiating a WebRTC handshake (see above) with the hailing

peer.

roomcast — as the name suggests, when this event is received, it is simply forward-
ed/broadcast to a room ID defined in the event body. If the room ID is not defined,
the message is ignored. The source user’s ID is appended to the event body before it is
forwarded (this is true for all events however). This event is only used when peers are in

client-server mode, which we will discuss shortly.

leave — a message to leave a room of a room ID defined in the event body. These
rooms can be arbitrary strings. If the room ID is not defined, the message is ignored. All
peers in the same room that are connected to the leaving peer are notified of this peer’s
departure (the event is simply forwarded /broadcast to those peers). Leave events are also
fired whenever a client simply disconnects (WebSocket) from the signalling server (these

can be ignored client-side however).

There is one more place, outside of the above event listeners, where the signalling
server can send WebSocket messages to clients, namely whenever a topology recompute is
triggered. This happens on join/leave events, but also when the topology is recomputed
periodically. When this happens, the signalling server sends topology events to the
clients. Crucially, the event body does not contain the entire updated topology, but only

the deltas that are relevant to a receiving client.

The topology event body contains up to four arrays. The first is the connect array
which instructs a client which peers to initiate connections to by ID. These are peers
the client is not already connected to. The peers it is meant to connect to receive the
same information, and whomever hails second is ignored. The second is the disconnect

array which are the delta disconnections. The third and fourth are the activate and

132

deactivate arrays, which instruct the clients of delta activations/deactivations of con-
nections that are already connected. If a client somehow receives an activate message
regarding a peer to which a connection does not exist, that peer is hailed, and the con-
nection is activated once it is established. If a client somehow receives a deactivate

message regarding a peer to which a connection does not exist, that message is ignored.

4.8.2 Supported topologies

The method we described in this chapter computes topologies that are well suited to
large-scale such as [Massively Multiplayer Online Games (MMOGs), We recognise

however, that different applications, and even genres of games, may have different require-

ments. We therefore implemented a wide range of existing and common topologies
that can each be used based on a developer’s requirements. We also implemented APIs
to allow developers to build in their own algorithms for computing topologies, as well as
a framework for evaluating them. This incidentally also allows us to easily compare these
different methods, which we do in section [5]

Small-scale topologies are for environments with discrete rooms that can support a

number of players usually in the single digits. Examples are collaborative editing or

simple [First-Person Shooters (FPSs)l Large-scale topologies can support a theoretically
infinite number of players and are well suited to continuous and location-based

|[Augmented Reality (AR)|games. Medium-scale topologies sit somewhere in the middle as

they mitigate a lot of the scalability issues of small-scale topologies. These can potentially
be suited for [Real-Time Strategys (RTSs)| [Multiplayer Online Battle Arenas (MOBAs)|

or Battle Royale games.

In §2.7.1] we organised the different topologies from literature into a taxonomy with
four overarching categories. We implement these high-level topologies, in addition to ones
that significantly diverge from the overarching topology type. We also implement several
versions of our own solution to compare against these. In this section we summaries our
implementation of these such that there is a point of reference when we refer to them

later.

To better facilitate the process of designing and debugging new systems and topolo-
gies, the evaluation framework we developed has some additional visualisation options
for outputting video mosaics of the topologies being tested by generating graph dumps of
these networks at fixed intervals. As long as these JSON dumps are formatted properly,

they can be fed into a supplementary set of scripts we developed that will turn them

133

into snapshots (using a library called cytosna}ﬂ), convert those frames into videos (using
the popular command-line tool ffmpeg), and finally tile those videos into mosaics (also
using ffmpeg). Figure is a frame from one such video over a synthetic workload.
Node positions correspond to player in-game virtual positions, but this too can be easily

configured to instead follow network coordinates or other layouts (e.g. a ring layout).

A . A, .. ’ . . N e
' Y : <
7 ' A N : \SoSeaaX
: | ! : ! A
AOI Chord ClientServer Complete
N e N = ISR ¢ \ b
Delaunay Kiwane Ours (minK = 1) Ours (minK = 2)
L
\h . L T
\\“i// |) \‘-i//
Superpeers (n = 2) Superpeers (n = 3) SuperpeersK (n = 2) SuperpeersK (n = 3)

Figure 4.5: A frame from the visualisation of different topologies under a synthetic work-
load. Link thicknesses correspond to link quality, red links are redundant (ours), and red
peers are designated superpeers for superpeer topologies.

4.8.2.1 ClientServer

Just to serve as a point of comparison, one of the topologies we implement is a simple
client-server setup with the signalling server acting as the game server. All client nodes
connect to this server node and the server forwards traffic from clients to other clients in
its area of interest. This is less of a topology, and more of a debug flag that is disabled

in production. Here, the roomcast WebSocket event that we described earlier is used.

"https://github.com/cytoscape/cytosnap

134

https://github.com/cytoscape/cytosnap

4.8.2.2 Complete

We also implement the naive, completely connected mesh approach to networking.
This is very straightforward; all peers get connected to all other peers. Forwarding is
disabled for this topology (AOIkasting is one-hop).

4.8.2.3 AOI

The most common topologies by far are [AOI}based ones. Connecting to peers
in a player’s [AO]] is the most “obvious” solution, however these methods differ in how
they define Some are linked to the use case of a specific game/application and will
e.g. define grid or dynamic when closer avatars are more important. Others,
such as pSense [118], connect additional “sensor” nodes on the periphery to better detect
when peers join , for the purpose of distributing discovery too (as opposed to just
D).

As we have reiterated throughout this thesis, we believe should not be prescribed
by the system, but rather the system should accommodate game design choices. We
therefore implement a standard topology that takes as a parameter an radius
defined by the game it is used in. Forwarding is disabled for this topology asting

is one-hop).

4.8.2.4 Ring

Structured topologies (e.g. are of course popular approaches to scalable .
These are significantly less popular in the space which prefers unstructured overlays,
but are still important to consider. In our original taxonomy, we included a range of
general-purpose structured approaches for completeness, but here we focus primarily on

ring topologies, as these are the only ones that have actually been used in an[NVE] context

in any major publications. Technically, it was in the context of|[Object Management (OM)|

rather than [UD], however by implementing this topology we can investigate if it would be
suitable for while we are at it (spoiler: it is not) and draw conclusions about the use
of based topologies for in general.

One important caveat is that these topologies are assumed connectionless and the
networks are directed. In practice, each node maintains routing tables and forwards
packets to other nodes efficiently (usually for the purpose of searching/storage). It really
does not suit the context here, but we implemented the browser equivalent of this.

Like Chord, we map peers in a ring configuration based on their IDs and connect them

135

to peers that are powers of two away from them. WebRTC is not exactly connectionless
however, and these connections are two-way, meaning the resulting topology is undirected
and closer to Kademlia than Chord through this symmetry. Nonetheless this serves as
a good model for this class of topology. Nodes under this topology are able to forward
outside outside of their [AOTd

4.8.2.5 Delaunay

Delaunay triangulation-based topologies can have some variation. These are often nested
into other techniques, for example connecting nodes by zone into disconnected Delau-
nay graphs. Fundamentally, these are similar enough to plain Delaunay triangulation
(especially in terms of scalability) that our implementation of connecting all peers in a
Delaunay graph approximates these well and later provides useful insights on how these

perform.

4.8.2.6 Kiwano

Thetopology of Kiwano [32] is the third power graph of a standard Delaunay network,
so it can be considered a Delaunay triangulation-based topology. Despite this, we decided
to implement it because it is different enough that its performance significantly differs
from simple Delaunay triangulation. It is also one of the most recent contributions to
this field and the “state-of-the-art” in many ways, even though the paper does focus a

lot on a different layer of scaling.

4.8.2.7 Superpeers

As already explored, many common architectures for games ca be generalised to
superpeer architectures. Usually this is in the form of a single player acting as “host”
for a game and becoming the de factor server, forwarding the traffic for other peers. Our
implementation of this is quite simple. The n peers that have been connected the longest
act as superpeers and the remaining peers are divided among these in a deterministically
round-robin fashion. The superpeers are completely connected among themselves. n can
be controlled, and at the lower bound, this approximates a client-server architecture,

while at the upper bound, this approximates a completely connected network.

Superpeer architectures do have some special rules however. For example, players can
send /forward packets to superpeers even if they are outside of their|AOI| since there is the
possibility that that superpeer is the only path to forwarding to a different peer that is

136

inside their [AOIl Without taking any kind of reputation into account, superpeers can also
deliberately delay or drop packets in order to gain an unfair advantage in-game (unlike
an authoritative server). When superpeers go rogue, the network can suffer dramatically,

which is something we explore later.

4.8.2.8 SuperpeersK

Since superpeer topologies (especially the ones within our taxonomy) often base super-
peer selection on factors that are outside the scope of our work (such as peer hardware
resources), we generalise this into a second type of superpeer topology. This employs
a resource-aware superpeer selection method: we perform k-means clustering over the
peer with n centroids, and select the nodes nearest to the final centroid positions to
become superpeers for the peers in their cluster. This is to represent superpeer topolo-
gies with more optimal layouts and — besides our own topology — is the only class of

topologies that considers network conditions explicitly in the neighbour selection decision.

4.8.2.9 OQOurs

Finally, the implementation of our topology within our evaluation framework is the very
same we described in Our method takes mink as a parameter to control the level

of connectivity and therefore fault-tolerance of our topology.

Of course our method has features that have nothing to do with the topology (for
example, update integrity guarantees and pre-connecting peers). These are all turned on

automatically when this topology is being used.

4.8.3 Client library

The peer library is, naturally, in Javascript, with no external dependencies. It is open
source under an MIT license and available on GitHubffl It can also be installed through
NPM as p2p-peer and used as a Node.js module with common browser bundlers such as
Browserify and Webpack, or as an ES6 module. Additional documentation is available
at http://libfabric.com.

For the sake of maximising the ease of development and minimising the developer
barrier to entry, we encapsulate all networking functionality behind (i) event emitters

and (71) shared objects that sync between peers automatically. These shared objects are

Shttps://github.com/yousefamar/p2p-peer

137

http://libfabric.com
https://github.com/yousefamar/p2p-peer

Figure 4.6: Three networking topologies of interest between servers (rectangles) and
peers/clients (circles) — client-server model (left), hosted (middle), and full
(right)

optimised for common game networking needs, for example by allowing developers to
mark coordinates for interpolation and/or prediction. This abstraction is also important
because we want to avoid code duplication and maintaining strongly related code in more
than one place. This is common in client-server applications where changes to client
communication requires changes to server communication in parallel, and vice versa.

With our system, developers need only maintain peer code.

We also recognise that some applications will simply never require a topology as
advanced as ours. In some cases, especially with few nodes, it is enough to simply
completely connect all nodes, or have a single superpeer. We therefore allow developers
to select these simpler topologies instead. Developers can of course augment our system
with their own topologies too or use any of the topologies we have implemented and

described in th previous subsection.

For example, in the middle option in figure 4.6 a peer is designated “host” and acts
as a de facto authoritative serverﬂ, as opposed to a completely connected topology such
as the right one in figure [£.6] This limits the server costs of the game provider to simply
acting as a lobby/directory for finding these rooms/groups, but at the same time, the

number of players that a host can support is more limited than a standalone server.

Each still require a server for signalling purposes to exchange the information required
to establish a connection between peers. This low-traffic server connection only needs to
be maintained if the peers need to be notified when a new peer joins their network, which
translates to joining their game room/area/instance/arena/match/etc. Otherwise it can
be severed after a peer network is set up. To use this hosted model, a developer

9Incidentally, there are several valid reasons for developers to use this architecture, and these have
been explored in the past by popular games [86]

138

Figure 4.7: An example of a computed MST topology where peers with better connections
(@ and @) act as supernodes, and with redundancy (@ and @)

need only configure their clients to use our Superpeer implementation with an n value of
1, then disconnect peers from the signalling server entirely once all players are connected

for a match for example.

Our library exposes a PeerNetwork object which handles peer connections and emits
events based on different events that happen in the network (such as peers connecting
or disconnecting). We allow arbitrary namespacing through rooms of which a peer can
join multiple. We will avoid detailing the various APIs we make available as these are

well-documented on the GitHub repository, but will provide a high-level overview here.

Our library exposes a set of methods that can be called directly if required. These

are:

signal(event, ...args) — Sends an event and data to the signalling server

e join(roomID) — Joins a room with a particular ID

leave (roomID) — Leaves a room with a particular ID

broadcast(event, ...args) — Sends an event and data to all connected peers

e async connect(sigServURL) — Connects to a signalling server

PeerNetwork also has three properties; ownUID which is the peer’s own UID in the
network, an array called peers which contains instances of Peer for all connected peers,

and an array called rooms which will be explained shortly.

One can .disconnect() from or .send(event, data) directly to each Peer, and on
the other side, peers will emit events based on what is sent that can be listened to. These

events do not need to be defined anywhere beforehand.

139

As an added layer of abstraction over network events, each room contains an eventEmitter

syncedData object which implements an Observer design pattern such that any changes
made to this object (or any nested objects at any depth) emit an event distinct to a
property’s path in this object. The value, along with the path of the added/modified
property’s path (e.g. .foo.bar) is propagated through the peer network and all peers
in a room can expect to see the property at that path updated. For added efficiency,
we only broadcast data that has been modified (aka delta-coding) which is a common
multiplayer game optimisation. We also keep track of which data has been set by which

peer for data ownership and to prevent broadcast storms in the peer network.

Finally, we add configurable, game-specific optimisations over this in the form of
state interpolation/prediction. This is quite simple in our implementation. For position
interpolation, we override the position getters/setters to instead set a target position,
then simply linearly interpolate the actual position to that target over time. When the
actual position gets within a configurable distance threshold to the target position, it
snaps to that position. For prediction, we extrapolate from the current position, the
previous position, their timestamps, and the current game time, to naively predict where
avatars would be if they continued moving based on these samples. A more advanced
motion prediction approach would be to take more samples into account and use better
prediction algorithms (e.g. a moving average on velocity, a Kalman filter, or even machine
learning-based approaches utilising mobility traces). We relegate this to future work as

we have the mobility traces to investigate this largely uncharted research area.

Namespacing within the object and how rooms are organised is left to the devel-
oper to define. As mentioned before, rooms can map directly to an arena instance in a
[MOBA] context for example. Another possibility is rooms mapping to a 2D or 3D spatial
grid where players join and leave rooms seamlessly as they navigate through the game

environment, prioritising connections to the players who are closest to them in the game.

Similarly, rooms can be “nested” into a tree structure for optimisation purposes, such

as for limiting update frequency for peers that are further away from each other in-game

(e.g. position updates) creating [Network Levels of Detail (NLODs)| This is especially
powerful in an MMOG] context.

140

Chapter 5

Evaluation

So far, we have captured [Networked Virtual Environment (NVE)| browser, and net-

work requirements through an analysis of collected traces and targeted experiments, and
presented the design and implementation of our system that aims to capture these re-
quirements. This chapter describes the evaluation of our system in depth, with respect
to different workloads, parameters, and existing solutions, in order to demonstrate that

we have indeed captured these requirements and met specific research goals.

5.1 Overview

We begin this chapter by outlining the evaluation questions we seek to answer. To frame
the chapter, we summarise the results of these questions through table [5.1 Then we
discuss our evaluation setup, what our performance metrics are, and justify the parame-
ters and workloads we use. Each section after those aims to answer targeted evaluation
questions. At a higher level, these evaluation questions seek to demonstrate that we
have met the research objectives set out in under the requirements captured in §3|
We cross-reference these requirements where necessary and reiterate them. These are

denoted by circled numbers corresponding to each evaluation requirement (e.g. (D).

5.1.1 Evaluation questions

The following is a list of four evaluation questions we seek to answer in this chapter, each
corresponding to a later section. Answering these questions under different workloads
and environments is implicit, although the focus is, unsurprisingly, on scalability. We

elaborate on what our performance metrics are in subsequent sections.

141

1. Scalability — How does our system scale with number of peers, compared to
others?

e How does it scale in terms of consistency metrics?
e How does it scale with respect to browser connection constraints?

e How does it scale with respect to browser/device bandwidth constraints?

2. Churn sensitivity — How sensitive is our system to peer/connection churn, com-

pared to others?

3. Loss resilience — How resilient is our system’s performance to packet loss, com-

pared to others?

4. Cheating mitigation — How well does our system mitigate cheating, compared
to others?

e How influential are cheaters in our system at different proportions?

e How does cheating affect the performance of our system at different propor-

tions?

We summarise the results of these questions through table Here, we have high-
lighted the best results in green, acceptable results (e.g. still below browser constraint
limits) in yellow, and the worst results in red. This table serves both to summarise our
evaluation results throughout this chapter, as well as highlight how our system is clearly
the most versatile and well performing under these criteria. Since we have linked these
criteria to the use case of [Peer-to-peer (P2P)| networks for browser-based

[Dissemination (UD)}| it follows that our system is best suited to this context as it strikes

a balance across workloads and performance metrics.

142

Table 5.1: Summary of evaluation results with best results highlighted green, acceptable
yellow, and worst red

Topol Performance Concurrent [Bandwidth [Churn Loss Cheater Cheating
opology Scalability Connections |Requirements|Sensitivity |Resilience|Influence Performance
Low drift
Med miss :
. High
Low—med extra Low High 2 / Somewhat
AOI Med drift at scale |scalability Low at scale High at Med Low affected
TR o extremes
High miss at scale
Med extra at scale
Med drift
Med miss i g
Ri Med extra High Very high £2&7$23 2t 1 Very high rsrﬁréfx;ﬁ tto
ng High drift at scale scalability High at scale) o8 High variance y
O > extremes affected
High miss at scale
High extra at scale
High drift
High miss
ClientS High extra Very low gec;\z,/érexcept %gg at L Unaffected Somewhat
lentserver Low drift at scale scalability Low ow natecte affected
.) ow at scale extremes
High miss at scale
Med extra at scale
Med drift
Low miss
. Med 4.4
Low-med extra Very low High . Minimally
Complete High drift at scale scalability High at scale Low at . Low Unaffected affected
Srn . extremes
Low miss at scale
Med extra at scale
Med drift
Med miss , :
Del Low extra High High %[licliflﬁgh Hich Med Somewhat
elaunay Med drift at scale scalability Low at scale o 18 L affected
. i extremes
Med miss at scale
Med extra at scale
Med drift
Low miss
q Low . .
. Low-med extra Plateaus at Very high T, [High Minimally
Kiwano High drift at scale |approx 50 High at scale Me{i ot Med High variance |affected
- . extremes
Low miss at scale
Low extra at scale
Low-med drift
Low miss] /
o (minK = 1) Low extra Very high ‘I;;Xa’;éght Mgi at Hich L Somewhat
urs {(minis. = Med drift at scale scalability L o 18 oW affected
;s ow at scale extremes
Low miss at scale
Low extra at scale
Med drift
Low miss ; q /
o inK — 2 Low-med extra Very high sii?a’ntclcght Mgg at Hich L Somewhat
urs (minK = 2) Med drift at scale scalability N 18 oW affected
G - Low at scale extremes
Low miss at scale
Low extra at scale
o] Med dl"_l‘ft at scale . ‘ Med at ’ T
urs (minK = 10) Low miss at scale |— High at scale |t 0aq Med Med N —
Med extra at scale S
High drift
High miss
. Low, but Med } . .
Superpeers (n = 2) (£ . Low scalability|far outliers Low-med at Low Low until oy Y7
Low drift at scale) majority affected
Hi : Low at scale extremes
igh miss at scale
High extra at scale
High drift
High miss ! y
S (n=3) Bkl e Low scalability E&(;“c;tft)iilzrs 1I\i)evxc}—mcd at L Low until Wiemy Lzl
uperpeers (n = Low drift at scale |-OW Scalabuity at B majority affected
Hi : Low at scale extremes ?
igh miss at scale
High extra at scale
Low drift
High miss .
: Med, but High -
SuperpeersK (n = 2) E(l)‘g;l de;ig Zt scale |Low scalability far outliers Med at High Low I;Iflf%?tlz‘ d
Hi : Low at scale extremes G
igh miss at scale
High extra at scale
Low drift
High miss .
. Med, but High .
_ High extra i e e S i . Highly
SuperpeersK (n = 3) Low drift at scale |Low scalability Ei;\?ittlfggle lg}l:tz;iezfes High Low affected
High miss at scale '
High extra at scale

143

5.2 Setup and methodology

In order to evaluate our system, we need a suitable testbed. The majority of our evalua-
tion questions are best-suited to a simulated environment, as this allows for more control
when stress testing with extreme parameters, and removes extraneous influence unrelated

to an aspect of the system that we are testing, yet may still affect the results.

We are however careful not to simplify our setup to the point where it can no longer
be accurately compared to a real deployment. To do this, we consider as many factors
as possible that may affect live performance. We then compare these results with those
from a real, yet smaller, deployment. The code for our evaluation testbed and related

scripts are freely accessible on GitHuH]

5.2.1 Our testbed

Our evaluation testbed runs on several third-party compute nodes, however each experi-
ment runs with set parameters on a single node, such that we can run several experiments
in parallel. Any randomness uses a seeded pseudorandom number generator that uses the
same seeds across nodes such that the experiments are consistent. All components of our
experiment testbed (refer to figure run in parallel threads, with the signalling server
running in the main thread. The main components here are the workload generator, the
main thread, and the peer threads. Figure [5.1|shows an overview of this and we describe

each of these in the following subsections.

Communication across these components is throttled to reflect varying network condi-
tions, which we will discuss shortly. Any randomness anywhere in our simulations is using
a seeded pseudorandom number generator, reset on every repetition, such that all results
are deterministic and consistent across varying parameters, workloads, and topologies.
Threads are also tightly synchronised such that their behaviour does not diverge based

on small differences in timing.

As our library and signalling server are written in JavaScript, targeting browsers, we
opted to write our evaluation testbed in the same language, such that we can directly
use the same code for computing topologies and update dissemination between nodes.
This has some drawbacks in terms of speed and ease of development for this sort of

programming, yet is much closer to reality.

'https://github.com/yousefamar/p2p-sim

144

https://github.com/yousefamar/p2p-sim

Workload 4>[Main Thread)—>

Generator
A A

update/synch -
(de)activate -
(dis)connect =

Social
Traces

;{— launch /terminate =

Dynamic
Traces

...........

Shared Memory (GT State)

Synthetic
Traces

Peer Threads

Figure 5.1: An overview of our evaluation testbed setup

5.2.1.1 Workload generator

At a conceptual level, the workload generator component of our system emits events
in chronological order based on which workload is specified. We discuss what these
workloads actually are shortly in §5.2.4]

At an implementation level, these are literally asynchronous generator functionsE] that
either stream from disk or generate workloads on the fly. These are very easy to extend
as long as they yield events in the same format defined in §5.2.4)

5.2.1.2 Main thread

The main thread launches all other threads and also runs the signalling server. The
signalling server updates SharedArrayBuffers with ground-truth position coordinates
from the workloads. Each peer has access to these ground-truth positions in addition

to their own, potentially inconsistent, view of the position coordinates of peers in their

|Area-of-Interest (AOI)| Of course, in reality, peers would not have access to the ground-

Zhttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/
function*

145

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/function*

truth data without time travel or FTL networking. However this allows each node to

calculate their own consistency and drift distances for later collation.

The main thread also has the task of collating all of the statistics (see §5.2.5|) that each
peer collected, validating and summarising these, and writing them to a series of files for
later analysis. It will launch different experiments with different parameters depending

on configuration controlled through command-line arguments and environment variables.

Because these experiments can take quite some time (days), even on the 16 core servers
we use, the main thread writes current progress to stdout such that we can keep track of
what experiment is currently running, with which parameters, with a progress bar to tell
us how far through the workload we are. It also prints summaries statistics after every
iteration so we can sanity check that the numbers are making sense while the experiment
is running. Based on the configuration given, the main thread will automatically destroy
all threads after an experiment, reset the PRNG, and start the next iteration under the

next topology /workload /parameter set.

5.2.1.3 Peer threads

Each player “node” is run in a Node.js Worker thread via the worker threads moduld]
Under the hood, each of these is a V8 isolate. Recall that this is what Cloudflare uses for
their serverless platform, as discussed in §2.21 So while these are not as light as traditional
threads, they have much smaller overheads than an entire Node.js instance (such as with

the cluster module), let alone containers, which most other serverless providers use.

We have two extremes in terms of the runtime of a peer when simulating. On one end
are headless browsers for each peer for realism, and on the other are all peers running
in the same process. As V8 isolates are a valid abstraction for distribution, we chose
to compromise and use these so that we can explore more extreme parameters (such as
large numbers of peers) without the overhead making this infeasible, while still having a

realistic simulation.

As each run is very CPU-intensive and has as many threads as there are peers at a
time, we run our evaluations on up to four mnx.io cl.2xlarge instances at a time, which
are described as having 16 CPUs and 32GB of memory. Considering that we go through
the same workload many times for different topologies and parameters, this is critical in

order for the simulations to run faster than real-time and minimise compute costs.

Peer threads are launched and terminated as they spawn and despawn as dictated by

3https://nodejs.org/api/worker_threads.html

146

https://nodejs.org/api/worker_threads.html

the workload. The signalling server in the main thread continuously connects and dis-
connects peer threads with Node.js MessagePorts, informs them of edge (de)activations,
and sends them updates that are supposed to originate from them to disseminate among

other peer threads.

The individual player threads then act as they would in “production”. Each thread can
communicate with connected peers via Node.js MessageChannels which the main thread
sets up for them based on the topologies that the signalling server computes. Peers can
disseminate updates through these based on logic that we describe in this chapter. Each
peer also collects its own statistics, which are consolidated when a peer despawns and
logged to several files at the end of each simulation round. The next section describes
how we ensure that the communication along these MessageChannel is as realistic as
possible considering that these are not actually nodes that are geographically spread out

on a range of heterogeneous hosts.

5.2.2 Modelling communication between nodes

While related work often runs evaluations under ideal conditions, such as lossless net-
working measured only in “hops”, this is not enough to evaluate how effective an update
dissemination would be in the wild. Indeed we rely on this heterogeneity in inter-node
networking in order to construct more optimal topologies. In this subsection, we describe
how we built a model of the network underlay to be used in our experiments. To be
clear, this part is entirely emulated based on real measurements — the communication

channels between components are throttled to match these measurements.

In order to make our simulation of the underlying networks more realistic, we make
use of historical iPlane [94] data. This is preferable to datasets from King| [55] and other

datasets, as iPlane is the only dataset that also includes associated loss measurements.

We create statistical distributions of network measurements from the dataset over all
of the years that iPlane has been collecting these (2006 — 2016), and use this to build a
graph of interconnected nodes, each with an IP address. To do this, we first crawled all
the online historical iPlane data (with some pointers from the original author regarding

the formatting and hidden directories) and fed it into a local graph database. We also

crawled the logs of inter{Point of Presence (PoP)|loss ratios. While the iPlane datasets

are not available in our repository, all of the code for crawling those datasets is.

For bandwidth, although it was planned, they never released inter-PoP measurements,

‘https://pdos.csail.mit.edu/archive/p2psim/kingdata

147

https://pdos.csail.mit.edu/archive/p2psim/kingdata

only bandwidth data for iPlane nodes in BitTorrent swarms averaged by /24 prefix. This
is acceptable to us however, as it is common to not make any claims about peer band-
width capacity, and simply assume unlimited bandwidth. We then measure individual
peer upload/download to draw conclusions of the bandwidth requirements under a set
of constraints for a topology. If these numbers are too high to be expected to work
on common consumer devices with average connections, we can make claims about the

feasibility of a particular setup.

From this DB, we then selected the 10000 nodes with the most latency measurements.
We further filtered these to include only ones with mappings (these mappings are
part of the iPlane dataset and one can contain many IPs). Incidentally, these also
include geographical coordinates, which we also stored, although we noticed that many of
them are invalid. We note that when visualising the resulting graphs and plotting node
coordinates on a geographical map (figure , clusters in the graph that have better
connections with each other tend to correspond to nodes on the same continent. This is
not surprising, as previous work has shown the validity of using geographical distance to

estimate latencies due to strong correlation between the two (see §2)).

WQQZ W
& .

Figure 5.2: A visualisation of the iPlane network before completely connecting (left) and
a corresponding map of known /valid coordinates (right)

While this graph is reasonably well-connected, it is not completely connected, so we
use our Graph Coordinate System (cf to fill in the missing edges, such that the
graph is complete. When a peer spawns, it is assigned an IP address from a pool of
unused [P addresses, and its edges with other peers map directly to the network graph
in terms of network characteristics. When a peer despawns, the IP address it was using

is freed and returned back into rotation.

As the number of iPlane nodes with [PoP| mappings is limited, it is possible to run out

148

of IP addresses to use in an experiment. In the majority of our experiments, we have not
encountered a case where the number of concurrent peers exceeds the number of available
iPlane IPs. For some however, we do (and we note where that happens). It these cases,
we randomly generate new nodes within the Graph Coordinate System with random IPs
and estimate their latencies. This is preferable to simply reusing active IPs as this would
be equivalent to two peers on the same host which is less realistic. Our simulations show

no signs of degradation or deviation using these randomly generated nodes.

As previously hinted, we do not create full WebRTC connections between each simu-
lated peer as there are too many variables to consider. Instead, we additionally include
an artificial “cooldown” period to inter-peer MessageChannels before these can be used
for communication. The cooldown (the time it takes for a WebRTC connection to ac-
tually be established) is a function of pairwise link quality (from iPlane data) based on
the measurements we took over our real implementation in §3.10] Other contexts and
approaches assume a zero setup cost (rightly so, as UDP is connectionless, provided hole

punching etc was successful). This is not a luxury we have.

Our incorporation of iPlane statistics is similarly straightforward. Communication
between peer threads is instant, however message arrivals are queued in a buffer at the
receiving node, and only processed after a delay corresponding to the network latency
between that pair of nodes. Similarly, each transmitting node has a configurable proba-
bility of dropping outgoing messages entirely. If a peer despawns before it has processed

the messages in its queue, the entire queue is dropped.

If a peer has no available means of propagating a message (either because it lacks the
connections, the connections have not yet cooled down, or the connections are inactive),
the message is dropped. An alternative policy is to queue outgoing messages until a
path becomes available, however this is widely considered to provide no benefit, as these

messages are very short-lived, and even small delays can make them irrelevant.

Recall the life cycle of an update in figure and our discussion of it in This
life cycle is matched quite closely in our experiments, but some parts, such as loss and
connection cooldown, are simulated and updates are dropped based on models we have
built previously. Each attempt at sending to individual peers has a deterministically
random chance of dropping based on the link loss ratio. Further, if the peer has been
marked a cheater, it will increment a “corruption” counter encoded in the update that
tracks how many times an update encounters a cheater in transit. Similarly, peers record
how many corrupt packets they receive and how corrupt those were. This information is
not used by the peers for decision-making, or considered in payload size, but is simply

used for later analysis.

149

5.2.3 Topologies evaluated

The topologies we compare our system against are the very same that we implement
in so we skip describing these again here. We do however also compare variants
of some topologies, including our own. For example, the Superpeer and SuperpeerK
topologies each with values of n at 2 and 3 separately, as well as Ours with minK values
of 1, 2, and 10.

As mentioned in §4.8.2 our method has features that have nothing to do with the
topology (for example, update integrity guarantees and pre-connecting peers). To be
clear, we are not just evaluating the topologies here, but the entire system, so these

features are taken into account of too.

In these experiments, the server in the ClientServer control is on the same physical
host, so in order for this architecture to be as close to realistic as possible, we use an IP
address from the iPlane pool to act as the server’s IP address and assign it the associated
network characteristics. For our experiments on mitigating cheating, the server also has
some special properties, for example it is not susceptible to malicious behaviour in the

same way that superpeers are for instance.

5.2.4 Workloads evaluated

Workloads in this context refer to update traces (real or synthetic) that we can play back
over different systems such that we can make different measurements over these
systems. In this section, we describe the workloads we use throughout the experiments we
run in this chapter. Recall that we captured a number of workload-related requirements
over §3| which we summarised in §3.11. These were:

(D Synthetic workloads must emulate realistic occupancy distributions

(2 Synthetic traces must reflect peer ephemerality

® Synthetic traces must emulate realistic active/idle states

@ Synthetic traces can assume a single player motion class

& Performance must be measured under workloads with some uniform motion flow

©® Area size and number of players in a synthetic trace must be set in such a way that

realistic [AOTl densities are emulated

150

Here, all but (3 are requirements that explicitly apply to synthetic workloads. () can
apply to synthetic workloads too, however trace workloads will meet that requirement
out of the box. The remaining requirements directly inform the way in which we generate

synthetic workloads for evaluation.

As introduced in we have collected several month’s worth of application-layer
network traces, including mobility data, for two [NVE] areas: a slow-paced, social area
and a faster-paced, dynamic area. We use these very same traces as real workloads
for evaluation. In addition to this, we generated synthetic traces by using the
[Waypoint Model (RWP)|mobility model which we have discussed in §2.5.4] the parameters

for which we will discuss shortly.

It is crucial to use various different workloads to explore the generalisability of tech-

niques. For example, some topologies may no longer hold up in a dynamic setting, such as

an |[First-Person Shooter (FPS)| due to the connection churn overhead. Similarly, traces

may not include large spikes of virality where a system must be able to scale to an un-
likely number of peers, while a synthetic trace can be tuned to extreme parameters. We

therefore use this variance to cover this range of different scenarios.

To make use of the trace workloads, we first convert them into a more usable format
— a CSV file with timestamped events. Other than a timestamp, each event includes at
least: the source peer’s ID, the number of bytes of the entire update payload, and the
source peer’s [AO]| radius. For this trace, the [AO]| radii are constant across peers and
time, but this column is included for testing dynamic and asymmetric radii in the

future. The event type column is one of the following:

e s — A spawn event indicating that a new peer has spawned. Every time a player
spawns, and connect to the signalling server, the signalling server recomputes

topologies automatically (in addition to regular recomputations).

e u — A position update event indicating that a peer has moved. If we detect the
arrival of an update before a spawn event, we automatically spawn the player at
that position, as we assume the spawn event was dropped or came before the start

of the trace. These lines include position coordinates.

e a — A update event that was not a position update (e.g. some other update type,

such as an interaction or chat).

e d — A despawn event indicating that an existing peer has despawned. If an unseen
player ID despawns, the event is ignored. When a player despawns, we recompute

topologies automatically.

151

All updates trigger an AOlcast from the source peer. For position updates, this
includes the coordinates. For any other AOIcast, we only keep track of the payload size

for statistics.

Synthetic traces only have spawn, update, and despawn events. All updates are
position updates; we do not consider other kinds of updates in this case, as is standard

in related work.

The payload size of each event is 49 bytes, except for despawn events which are 41

bytes as they do not contain position data. Figure shows a breakdown of the payload.

20 bytes 8 1 8 2 4 4 2
I I I I I
IPv4 headers UDP headers Timestamp X coord Y coord
(unsigned long) (float) (float)
Event type AOQOI radius Signature
(char) (unsigned int) fingerprint

Figure 5.3: A breakdown of the synthetic trace payload

Here, the X and Y coordinates are not included in despawn events. The signature
fingerprint is the last two bytes of the full fingerprint, as justified in In cases where
the radius is constant and global, it is not necessary to transmit this with every
package. As there is precedent for asymmetric (i.e. one player can see another
but not the other way around) [107], and certainly for variable (e.g. the nearest
n avatars) [9], we decided that it is important to encode this information in synthetic

payloads. This payload can easily be extended to three-dimensional coordinates.

The above sizes are of course not necessarily the same across all games, however they
are typical for average optimisation and it is more important that the size is consistent
across all topologies tested for comparison. It is also conceivable that the number of bytes
may differ based on if additional state data is sent in the same packet, if it is compressed,

encrypted, or signed in different ways.

Location updates are also only sent if they change. Modern games will delta-encode

any state updates to cut down on traffic, so this is a standard optimisation.

The synthetic workload generator we described in take spawn and despawn
intervals as parameters and generates events following these patterns. This is useful
for later in this chapter when we investigate how well systems scale as the number
players increase. For example, for one version of this workload, we consistently spawn new
peers at one minute (game-time) intervals, and despawn players randomly at two minute

intervals. This gives us a steadily increasing number of peers at fixed intervals, while

152

also ensuring we capture the effects of peers despawning (e.g. before they forwarded an
update to another peer). This allows us to measure the performance of our system against
others for a range of different numbers of peers (to an extreme) without the temporal
inconsistency of doing so over a non-synthetic trace. As a net of 1 avatar spawns every
two minutes, it does not take long before we have an area of avatars with a density that

exceeds the maximum in real traces, thus covering cases of varying extremity.

The RWP| mobility model has the evaluation advantage that motion can be very
chaotic and cause a high degree of connection churn. This is ideal for stress-testing our
system in the worst possible conditions. When measuring the effects of churn, the syn-
thetic trace instead starts with 100 avatars and (de)spawns these at equal fixed intervals
such that the total number of peers stays constant. We vary the rate of (de)spawning

between every minute (high churn) and every hour (low churn).

Players move in 2000x2000 space of arbitrary units, similar to VON [61]. Funda-
mentally, this parameter is only important to the extent to which relates to two other
parameters: the movement speed of the avatars and the number of avatars. We set the
movement speed to be a constant 130 units per second, and we define 1 simulation tick to
be equivalent to 1 millisecond. We also set the default update interval to 700 milliseconds,
which is the mean we have observed within our “dynamic” trace workload (the “static”
trace workload was in the 3.4 second range). This is typical of faster-paced games (see
table [2.1)). The speed of 130 units per second is the maximum movement speed from
our real traces, so we consider it realistic. This gives us similar movement speeds to our

traces, in similar sized areas.

5.2.5 Performance metrics used

As we have established in , consistency/staleness metrics (which we further decon-
struct) are the primary means of comparing the quality of different topologies over the
same physical network, we begin our evaluations measuring these for different workloads.
We do not make any claims about what the minimum consistency “threshold” required
for user satisfaction is. Inconsistency tolerance differs depending on the application —
table lists such thresholds from the literature across genres.

We focus on three different measures that aim to paint a more complete picture than
in literature. Figure is a visual aide to help explain these. Here, we focus on the
perspective of the dark blue player with the grey [AOI The black players are what the
blue player sees, and the green players are their “ground-truth” positions; where the

actually are at that point in time. The difference in where we see them and where they

153

@1
@ o
§ @N

Figure 5.4: Illustration of position drift, missing peers, and extra peers, from the per-

spective of the dark blue player and their grey

actually are will depend on the update dissemination latency and the motion of the player.
For example, the group of three players on the top left are likely idle and therefore close

to their true positions.

@ is an example of intra]AOI| drift. Each peer thread, with knowledge of ground truth
positions, calculates and stores these drifts for later analysis. In the case of synthetic

peers, these are further grouped by total peer count.

@ is an example of a situation where our player thinks that a peer is in their [AO]]

when in reality they have left it. This is an extra peer.

Meanwhile 3 is the opposite — a peer’s drift is not taken account of because our
player thinks that that peer is outside of the when it is not. This is a missing peer.

Finally, @ is an example of a movement entirely outside of our and we therefore

do not care about it; the drift distance is not sampled.

Let A be a set of peers that any given player believes to be in their [AO]l This set
is likely stale/inconsistent, as this player does not receive position updates instantly.
In our evaluation environment, players also have instant access to ground-truth position

information however, through shared memory. From this, they have G the actual, ground-

truth [AOT set.

154

e C' = ANG is the set of peers that a player correctly presumed is in their [AO]]

e £ = A\ G is the set of extra peers that a player thinks is in their but actually

are not

e M =G\ A is the set of missing peers that are actually in a player’s but that
the player thinks are not.
We divide the cardinality of M by the cardinality of G, i.e. %, to get themissingRatio.
This tells us what proportion of the actual is consistent with the peer’s view, from

zero (completely consistent) to one (completely inconsistent).

We cannot consider this measure on its own however, as it could be that a peer thinks
that all peers are in its[AOI] and the above measure would indicate perfect consistency.
We therefore divide the cardinality of £ by the cardinality of A, i.e. %, to get the
extraRatio. This tells us how much of a peer’s perceived [AO]|is not part of the ground-
truth [AO]| and is superfluous. For both measures, less indicates higher consistency and

is better. We sample these, along with drift distance, at regular intervals of one second.

In plain English, our main general performance are three:

e Mean Drift Distance — At any given point in time, a player’s known [AO]|
contains a set of peers with potentially stale (position) state. We sample the mean
difference between the stale positions and the ground-truth positions of [AO]| peers
throughout the simulation (at one second (game-time) intervals) and calculate a

per-peer, trace-wide mean drift distance.

e Mean Missing Ratio — The ratio of peers with ground truth positions within a
player’s [AO] but that the player either does not know about, or knows about but

incorrectly assumes that they are outside the [AOI] averaged across a workload.

e Mean Extra Ratio — The ratio of peers that a player assumes is within their

[AO]| but are actually not, averaged across a workload.

In addition to these, we do also explicitly examine more traditional metrics, such as
bandwidth and statistics relevant to the experiment in question, and we outline these
metrics where pertinent. The consistency metrics described in this section are the most

important however, as these and variants of these will appear throughout this chapter.

155

5.3 Evaluating scalability

The most prominent challenge in developing systems for large-scale [NVES especially
[Massively Multiplayer Online Games (MMOGs)} is undoubtedly ensuring that these can

scale with the number of peers. In order to evaluate the scalability of our system, we
consider the most important metrics laid out in §5.2.5] We also compare our method with
a range of other representative methods from the literature, which we have implemented
for this purpose. This section is split up into two parts. The first looks at performance at

scale in general, and the second focuses on scalability in the context of browser limitations.

5.3.1 Performance against AOI density

Recall that we posit that dynamic are not an adequate solution, as in most use
cases, radius is prescriptive, meaning that [P2P||Interest Management (IM) must
allow for radii set by the environment, as opposed to the other way around. It

follows that can become very dense, meaning nodes will need to multicast to more

peers, which makes scaling difficult. We ask:

p. How does our system scale with number of peers, compared to oth-

ers?

We first measure our performance metrics over our traces (static and dynamic) to
establish a baseline. As we have no control over how many players there are, we take
measurements throughout the entire traces. Our main criticism of related work that at-
tempts these kinds of consistency measurements (see is that they loose too much
information by looking as only averages 33}, 61, [70]. Other work treat consistent/incon-

sistent as binary states as opposed to a spectrum of how consistent /inconsistent |132] (see

§2.8.1] and §2.8.7| for more information). To mitigate this, we consider distributions. This

allows us to not only see if performance is generally good, but also if there a high variance
or an abundance of outliers. This is important as a minority of users experiencing terrible

performance at the cost of increasing the average performance is unacceptable.

Figure 5.5 shows distributions of mean drift distance across peers in the form of Tukey
Box-Whisker plots. Whiskers show 1.5x inter-quartile range above (respectively below)
the third (respectively first) quartile, whereas red diamonds show the mean values. These
are overlaid on on top of violin plots to better visualise the nature of the distributions.
Topologies with asymmetric peer roles, such as superpeer topologies, are especially sus-

ceptible to the main point of criticism we described previously, which can be seen in the

156

pronounced bimodality in their violins. We will continue to present our results through-
out this chapter plotted in the same way as it is a very powerful way of illustrating this
kind of data.

AOI-
= 3)-
minK = 2)-
2)-
3)-

2
AOI
1)-

2
Ring-
3)-

2

Kiwano-

Ring
Kiwano-

Complete-
Delaunay-

Delaunay-

21500 21500
= =
=] =]
= =
2 g
=1
&1000 &1000
Nab L] 3 Nab
(&) & jol
Q o
= g
5 5
& 500 o & 500
et et
o o
g M g
et 3
= =
I
0 0
‘ 5 N
g =z
O
(@)

ClientServer-

Ours (minK

Ours (minK = 1)-
Superpeers (n = 3)-

Ours (minK
Superpeers (n

Superpeers (n

SuperpeersK (n = 2)-

SuperpeersK (n
SuperpeersK (n
SuperpeersK (n

Topology Topology

Figure 5.5: Mean drift distance distribution across real environment traces; dynamic
(left) and static (right)

We would like to draw attention to a number of observations. First, drift is higher
overall in the dynamic area (left) as opposed to the static area (right). This is expected,
as a large part of drift is due to topology churn, which we explore in more detail in
the following sections. Equally, players are simply more mobile in dynamic areas and

therefore their peers will have views of them which are more out of sync.

Across the board, the client-server architecture performs the worst, along with the
naive superpeer topologies, and the heavily-connected topologies (Ring, Kiwano, Com-
plete). It is not surprising that naive superpeer topologies are similar to client-server as,
under these conditions (no cheaters etc), naive superpeer topologies are almost equiv-
alent to client-server with multiple servers. We notice however that smart superpeer
selection can result in networks that outperform ours. These shine in static environments

as superpeer churn is much slower.

Similarly, the Delaunay topology is generally on par with ours, and [AO]] topologies
(the most prevalent in literature) have the globally lowest drift spread and outperform
ours. Does this condemn our system to inadequacy? No, as this metric does not provide a
complete picture as we will see shortly. Equally, this comparison simply served to set the
scene under “perfect” conditions. If a superpeer were a cheater for example, or suffered

from high loss, this would be devastating to that topology’s performance.

157

As previously alluded to, drift distance alone does not paint a full picture, as peers
may be entirely unaware of certain peers that are supposed be in their [AOI] Similarly,
they may believe that certain peers are in their [AOI when they actually are not. This can
be linked to the same cause for drift, but can also have algorithmic causes. Figure|5.6[and
figure show the distributions of mean missing ratio and mean extra ratio respectively
across dynamic and static trace workloads. There are across the entire traces — we

found that there were no temporal aspects to these metrics and they are virtually the

same across the entire traces.

Ring ————— 4

Mean missing ratio

=] [=1 =]

- (=)} oo

*
O3

Mean missing ratio
e o I
[oo] wn ~
wn [=) W

Kiwano- @>—<
Delaunay: —— (¢ T =——

0.00
2 % é“ = a é‘ 5 a @ @ § a 2 = & 5) §)
2 5 £ 5 < I Il 50 = It o< It [T I
=} v M M= = = = @ = =} MM = = @ = =
S £ £ A 2 2 =2 B o S £ £ 2 2 B 2 9w
@] = F A Z X 2 3 M &) Z g 2 L2 8 M M
E E 8 ¢ 8§ § ¢ SIS 8 8 T £ £
@ @ a 3 a © Y » @ 2 a v 8 38
Z % o = Z 2 =g
5 3 g & 2 = 5 3 2 3 = =
o o 5 g8 g g o O 5 = 2 2
Topology Topology

Figure 5.6: Mean missing ratio distribution across real environment traces; dynamic (left)
and static (right)

1.00- 1.00

I

9

O
o
=
O

-
).50- H

0.25

0.25-

0.00

Mean extra ratio
=1 3
= e
T e
] *
= K3
Mean extra ratio
; h
[=}
Delaunay] ——— ¢ F——

5 6 =~ & wm A~ = =~ & = = = = = =~ o & @ = = & = =
= - — < = (] O (o] o [ag} o o O — (] - = P=) [ag} (] L o o™

s = R = z = 2 s Z z
S = 1 5 x = T (A R [T~ -~ R [T - B
Z E M = M = @ = = = MM g S = = ©n = s
¥ 5 203 = s 2 - 7 = = g & ¥ - - 2 = =
o £ A = 2 8 ¥ £ ¥ £ E © 2 2 B & &
g g g = 2 8 7 g g g 8 = 2 7
- - a2 © g a 3 - = 2 a © 38 3

;_ 4 2 2 Z Z = g
5 5 g = 3 = 5 3 g g [l =
© © 3 2 2 2 ° ° : 2 2 2
7] 5 o =3 ©w wn = =
w %] wv 1%
Topology Topology

Figure 5.7: Mean extra ratio distribution across real environment traces; dynamic (left)
and static (right)

158

These plots give us a number of insights. When looking at the mean missing ratio of
any topology with strong centralisation (client-server and superpeers), we see just how
badly they suffer in performance for any environment type. We really cannot stress the
importance of these results enough — the previously ideal topologies now miss more peers
than not. What is the benefit of maintaining low drift for only a subset of peers? These
misses are likely caused by latency along the superpeer links and peers switching between

superpeers, since, as expected, static environments (right) are “easier”.

[AO] topologies now also perform worse than ours, and suddenly, heavily connected
topologies (mainly Kiwano and Complete, but also Ring to an extent) perform very well.
This is expected, because part of benefits in the tradeoff of being heavily connected is that
you miss far fewer peers due to motion-related churn since they are already connected.
One would expect the Complete topology to have a mean missing ratio of zero as, by
definition, it is completely connected. However, this is not the case due to inconsistent
peers that have just spawned and are in the process of connecting to all other peers. We
can see that this penalty is not insignificant in the difference between the mean missing
ratio for the Complete topology in the dynamic versus the static environment. While it
still preforms the best in the dynamic environment, it is still much worse than the same

topology in the static environment.

The mean extra ratio measurements are just as damning for the topologies with
centralisation. The only discrepancy here is that the [AOI] topology performs well in static
conditions (mean = 0.2740786, median = 0.2390873, standard deviation = 0.17109030),
but not as well in dynamic conditions(mean = 0.4490360, median = 0.4504194, standard
deviation = 0.16249360) — almost twice as bad. This is again due to mobility-based
churn. In we showed how this topology is the most common in literature for [UD|
Evaluation workloads are usually static, social environments (such as from Second Life).
This result tells us that [AOIlbased topologies can be acceptable for static environments

such as these, but critically, fall short for dynamic environments.

In order to be able to answer the question of scalability properly, we must however
go further. We take more detailed measurements over our synthetic workloads that we
segment by total peer count. We then take measurements as we incrementally increase
the number of peers. This allows us to see how these metrics change as the number of

peers increase and extrapolate to extreme cases.

We also note that our synthetic workload is tuned to test for worst case scenarios.
Some realistic more realistic scenarios will not necessarily give us any useful insights. For
example where players spend a lot of time on their own will, by definition, have a
very high consistency, irrespective of the scalability of the network.

159

Figure |5.8| shows the relationship between the number of peers and the mean drift
distances (locally estimated scatterplot smoothing (LOESS)| span 1). Figure shows

the mean missing ratios and mean extra ratios for context.

Topology

AOI

- Ring
ClientServer

= Complete
Delaunay

- Kiwano’
QOurs (minK = 12)

= Qurs (minK = 10)
Ours (minK = 2)
Superpeers (n =2

= Superpeers (n = 3
SuperpeersK (n ="2

- SuperpeersK (n =3

~
ai
<

Ul
S
<

Mean Drift Distance (in-game units)
N
w
o

0 20 40 60
Number of Peers

Figure 5.8: Mean mean drift distance across the high-churn synthetic workload for dif-
ferent numbers of players

1.00

Aadbiil| } #§

()]
14
9
G

ing rati

Mean missin
j=} (=}
3o} wn
w [=}
Complete: —————————— @8 1T =
Mean extra ratio
o e 54
[3e) W ~J
i (=) i
Complete: ——————————— % T

0.00 0.00
2 =8 g @ g @ @ aa a8 =« g 7 S 5 8 & @ 2 &aa
S g 2 £

R - I o g5 P R

Z 3 3 E 3 3
VR 2o = g &8 & £ ¢ M oM 4 3 v = g £ g &
E E £ A £ % £ 4 98 £ g A g s £z MM
E E =1 Q vl (5] w — E E — Q o 1 j2
7 7 E 2 5 2 8 © i E o 2 2 5 8
2 2 5 & o & o z 2 e & = o 9
= = o o & o e =} = Z o o & 2
°© ° 3 S 2 5 2 © © 3 s 5 2 2
227 3 2T 22

Topology Topology

Figure 5.9: Mean missing (left) and extra (right) ratio distributions across the high-churn
synthetic workload

160

First of all, from figure we can see that all four superpeer variants, as well as the
client-server architecture (the server akin to a superpeer) result in low mean drift distance
which increases slowly with respect to the number of peers relative to other topologies.
This is followed by Delaunay and AOI topologies, similar to the trace workloads. The
mean drift under our system is however lower than the strongly connected topologies

(Chrord, Kiwano, Complete) for similar reasons as before.

Again, this on its own does not paint a complete picture. In figure [5.9] we plot
distributions of mean missing and extra ratios. We do so with box/violin plots because
these are distributions are all but unaffected by the number of players and result in flat

lines, so this gives us more information.

Here we can see that, in this high-churn environment, the only reason the topologies
that have a lower drift than ours do so is because they entirely unaware of the vast
majority of the peers in their |[AOIs! Our system’s mean missing ratio is only surpassed
by Kiwano and the Complete topologies, which is specifically because they are so highly
connected. Meanwhile our topology’s mean extra ratio surpasses even these by a large
margin. We can conclude from this that that not only does our system scale well in

comparison to other topologies, but it does so under a range of workloads consistently.

5.3.2 Meeting browser constraints

As we have laid out in §3.10, the main reason existing topologies do not fare well in
our context, is because of browser constraints. These include a significant overhead in
establishing connections, as well as both soft and hard limits to the actual number
of connections that a peer can simultaneously maintain. Systems that do not take these

into account incur heavy performance costs.

How does per-peer connection count scale for each topology as peer
4 count increases?

Knowing browser connection limits — thanks to our measurements from — we
can measure the maximum degree (activated edges) for each topology across different
numbers of peers to see to what extent these fall below or exceed said limits. We sample
every time a topology is computed (i.e. whenever a peer joins/leaves and at fixed inter-
vals). This is over our synthetic workload such that we can control the number of
players. We spawn players at one minute intervals and despawn them at deterministically
random rate every two minutes. Every sample is then the maximum number of activated

edges any one peer has. This means that our player count grows at a rate of one player

161

every two minutes. Figure |5.10|is a plot of these measurements with the grey envelope

corresponding to a 95% confidence margin.

Topology -
AOI e
Ring e
Client Server)

o
<

---- Complete /’
------- Delaunay -
------ Kiwano ° _
——— Qurs (minK =
----- Ours (minK =
Superpeers (n
Superpeers
Superpeers
SuperpeerskK

Max Active Degree
N
()

()
o
\

N\

0 25 50 75 100
Number of Peers

Figure 5.10: Maximum active degree by number of peers over the synthetic workload

Here we make some important observations. First of all, the upper bound is set by
the client-server and complete topologies. This is expected, because for the complete
topology, all peers are connected to all other peers, and for the client-server topology, the
server is connected to all clients — the maximum active degree is the same as just how

many clients there are.

Similarly, the maximum active degrees of superpeer architectures have clear, tight
linear relationships with the number of peers. The extent of this will of course depend on
the number of superpeers. There will always be a more optimal number of superpeers and
distribution of peers among them. If we are optimising for number of connections, we can
expect the ideal to be a half an half split of superpeers and normal peers, mathematically
speaking. If there is only one superpeer, we approximate a client-server model, and if all
peers are superpeers then we are back at the Complete topology, unless the connections

between superpeers adopt fat-tree-like topology for example.

The difference between two and three superpeers is clear here however, as three super-
peers always result in a less steep correlation. We also note that the superpeer topologies
that perform better (which use clustering for superpeer selection and peer allocation)
have a higher maximum active degree and are also the most unpredictable. This is be-

cause the peer distribution for these is not symmetrical and highly dependent on virtual

162

position, while naive superpeer topologies will split peers among superpeers equally in a

round-robin fashion.

[AOT}based topologies, which are the most common in literature, seem quite attractive
and “obvious” solutions at first, but they can have their flaws. Here we see that the
maximum active degree increases linearly with player count, however this is misleading.
[AO]] maximum active degree increases with [AO]] density, not player count. Since we are
spawning players in a fixed-sized area, naturally the density of the will increase,
but we have already shown in and other parts of §3|that there is a natural “human”
limit to how dense get — the human brain is simply not capable of interacting
with that many people at the same time. Players tend to space themselves out and leave
when an area gets overcrowded. It is difficult to have any meaningful interaction when
avatars are literally on top of each other, and indeed the physics engines of many
preclude that possibility. That being said, there is nothing stopping this topology from
easily hitting browser connection limits with a large enough [AOI]in a sufficiently popular

area.

The remaining topologies do not show a linear relationship. Kiwano, based on Delau-
nay power graphs, has a significantly higher connectivity than plain Delaunay, but still
maintains many of its properties, making it quite scalable for this particular constraint.

Ring is, of course, log 2 as expected, and a Delaunay graph is even more efficient.

The simplest form of our topology reduces to an[Minimum Spanning Tree (MST)| This

is not necessarily the topology with the lowest maximum active degree (that would be
one where nodes are literally chained together such that the maximum number of active
neighbours a chain can have is two). Our topology can get very close to this however and
scales extremely efficiently. We can comfortably scale to unrealistic numbers of peers and
still fall well within browser bounds. This holds true even when we add our redundant
connections by increasing the connectivity parameter; the difference is negligible, which

is very promising.

This is amplified by the fact that we maintain a control channel with the signalling
server, which tells us when peers disconnect, and allows peers to remove dead connections
properly (which can be a problem as we have have shown in §3.10/ If they are not, too

high a churn will cause these limits to be rapidly exceeded.

This is of course not the only constraint in a browser context. As we have alluded
to earlier, user devices and internet connections also impose limits. A solution
to game networking that also increases peers’ bandwidth usage by orders of magnitude

is not practical, especially if peers simply do not have the capacity. This is largely

due to |[Application-Layer Multicast (ALM)| causing a disproportional increase upload

163

rates, and unfortunately download speeds/capacity tends to be prioritised over upload

speed /capacity with modern consumer connections.

94 How are upload/download rates affected as peer count increases?

We measure the upload and download rates for each peer and plot these distributions
as box/violin plots in figures and for the dynamic and static workloads respec-
tively. To measure these we had each peer (or more accurately, peer session) keep track
of exactly how many bytes it uploads and downloads, and we divide this by the time the
lifetime of the session in order to get per-peer averages. We opted not to limit the y axis
in order to illustrate the extent of the extremes, which tells us much more, however the

x axes (topologies) are ordered by mean for clarity.

50k

40k

ClientServer
=2)
=2)

Upload (bytes /s)
— (3] 2
o) S <)
=~ =~ ~
Er
Delaunay- <®——o0
AOl- Lof—————
Complete: @ }F——m————
Download (bytes /s)
- w > ©
=~ =~ -~
Ours (minK = 1) I%ﬂ}"
ClientServer ®
Ours (minK = 2) @—
Delaunay: == #® =
AQlr —— ¢ =——
Complete: —— ¢ F————

Ours (minK = 1)- #—
Ours (minK = 2)- &—

~
o
I
g
5]
L
o
£
L
o
7

Superpeers (n = 2)

Superpeers (n = 3)
SuperpeersK (n = 3)
SuperpeersK (n = 2)

Superpeers (n
SuperpeersK (n = 3)

SuperpeersK (n

-
(=]
=]
=X
(=]
g
<

Topology

Figure 5.11: Mean upload (left) and download (right) rate distributions across the dy-
namic environment workload ordered by mean

For the most part, while the overall bandwidth requirements differ across workloads

(as expected) the patterns remain the same. As expected for [ALM| download rates are
much lower upload rates across the board, owing to loss etc.

We can immediately see that a Complete topology will have the highest requirements,
followed by AOI and Delaunay. This is because for these topologies, an [AOIkast of one
byte to n peers will result in an upload of n bytes, or (in the case of Delaunay) approaching

n bytes due to high connectivity.

Note that Kiwano and Ring are missing from these plots. Both have upload and
download rates so high, that the other topologies are completely flattened in comparison.

Besides our topology, Ring is the one system where peers can forward outside of their

164

0k

AOI- [+
Complete- [#
=3)
AOI

ClientServer

o
|
=
»
=
o
3]
=%
=
3]
=%
=
%2}

Ours (minK = 2)- f&=——

Superpeers (n = 3)
Superpeers (n

Upload (bytes /s)
. W
=~
Ours (minK = 1) &»—
[
p—
—
Delaunay- [@————
Download (bytes /s)
S) — (S
-~ =~
Superpeers (n = 2) Ei»————
ClientServer- [#—m—
Ours (minK = 1)- {J&}————
uperpeersK (n = 2)- J¢b———"—"—
uperpeersK (n = 3)- {[¢}b——
Ours (minK = 2)- {J¢}F——
.
Delaunay- 1 ¢ pb—————
Complete < 1 ¢ }b————

uperpeersK (n = 2)
SuperpeersK (n = 3)

Superpeers

%} %}
Topology Topology

Figure 5.12: Mean upload (left) and download (right) rate distributions across the static
environment workload ordered by mean

AO]| (to non-superpeers of course). Recall that we limit the number of hops an update
can make for this reason. Kiwano is topologically very strongly connected, which makes
is akin to a Complete topology that supports forwarding. For similar reasons, Delaunay
topologies have high bandwidth requirements, however these are still reasonable when

compared to Kiwano.

On the other hand, client-server and superpeer topologies will naturally have lower
bandwidth requirements on average, as peers may only need to send/receive an update
to/from a single server or superpeer, however the trade-off is that the server or superpeer
will need to have a significantly higher bandwidth capacity. This creates the dispropor-
tionately high upper bounds where a few nodes take the majority of the load.

The most important takeaway from these plots is that our system while, of course, not
able to beat centralised architectures on average, achieves consistently low upper bounds
for bandwidth requirements across peers. This is especially important for browser and

mobile use cases.

For good measure, we also examine how bandwidth usage scales against number the
number of online peers under our synthetic workload where we can control that manually.

Figure shows the relationship between these two for upload (top) and download
(bottom) rates.

165

400

Mean upload (bytes /s)
[N} (9%}
(e} S
o o

—_
o
(=)

400

98]
=l
S

Mean download (bytes /s)
= S
S (e

Figure 5.13: Mean upload (top) and download (bottom) rates across the synthetic work-

Topology

AOI
ClientServer
= Complete
Delaunay
= Kiwano
Qurs (minK = 1%)
= Qurs (minK = 10)
Ours (minK = 2)
- Ring

Superpeers én

= Superpeers
Superpeers E
= SuperpeersK

0 20 40 60

Number of Peers

Topology

AOI
Client Server
= Complete
Delaunay
= Kiwano
Ours (minK
= Qurs (minK
Ours minK

D= —

~ O
~

Superpeers n=
= Superpeers (n =
Superpeers n
- SuperpeersK n

—_—

0 20 40 60

Number of Peers

load for different numbers of players

These are of course less realistic, and we can see that the upload rate plots and the
download rate plots are virtually identical. These figures mainly serve to illustrate that

as the number of peers go up, our topologies, despite requiring forwarding outside of

AOIls| scale slowly and near-linearly with the number of peers, while others do not.

In order to include Kiwano and Ring on this plot, we lowered the global maximum

hop limit to 3 hops, which shows that Kiwano behaves similarly to a Complete topology.

Ring continues to have the highest requirements.

166

Recall that the only two systems that can forward messages outside of their [AO]| are
Ring and Ours. For illustration, we tested a variant of our topology with a minimum
connectivity variable of 10, such that it can be comparable to Ring in connectivity. This
variant turns out to have similar requirements as we can see here. This simply serves
to illustrate that our system is easily adjustable and versatile depending on developer

requirements and the use case in question.

Ultimately, these measurements tell us that, for typical workloads, the bandwidth
requirements under any topology fall well bellow typical browser constraints. At scale,
the topologies that previously performed better on mean missing ratio, Kiwano and Com-
plete, have over double the bandwidth usage of Ours. This means that these will reach
bandwidth limits at least twice as fast as ours; at half the number of players. In such a

restrictive context, Our topology is the best choice.

5.4 Evaluating churn sensitivity

p How sensitive is our system to peer/connection churn, compared
4 to others?

In we highlighted one of the primary browser constraints to be the time it takes
to establish new connections. Our first solution to this is to pre-connect to peers outside
of the [AO]| such that by the time they enter the [AOI] the connection is already well
established. A secondary solution is to modify semantic distances to account for longevity
of a connection, such that longer-lived connections are preferred. This effectively applies

a switching cost and avoids incurring these overheads.

To test how well this performs, we vary topology churn and examine how many

updates are lost as a result of connections not having had enough time to be established

(which we call the connection cooldown; see §5.2.2| for more details).

We use the real cooldown measurements (from §3.10) and iPlane measurements (from
§5.2.2)) to deterministically apply a cooldown (which is a function of link latency) to each
newly established connection. We then count the number of updates that are dropped

as a result of this as well as due to despawning.

For context, we also show how many updates are lost in this way over the trace
workloads. For these, we have no control over the churn, unlike with our synthetic
workload. In the latter case, we segment the data by the degree of set “churn”. We define

“churn” as a value between 0.0 and 1.0 which maps to (de)spawn intervals between one

167

hour and one minute. As the spawn and despawn rates are the same, the number of peers

remains constant. We spawn 30 peers immediately in the beginning.

Figure shows the proportion of updates lost due to cooldown against the total

sent successfully, across trace workloads. The sum of these is the total number of updates

attempted to send (no other loss).

=
[}
21.0-
<
IS
o
]
g
S
S50.51
=
o Statistic
M l Dropped due to cooldown
B Successfully sent
0.0 ___
& 3
S > & & 3
e < & // // // // Q\ & Y* // //
& PSR e P P &S
& & & & & 52 5°
N R & & & &
R <
Q,Q Q,Q Q (4
S S %\ﬁ %QQ
Topology
=
2
Tcl.O
=
o
@]
z
20.5
=
o Statistic
A B Dropped due to cooldown
B Successfully sent
0.0 I D
) & O &) &
7 < 7 i N 7 N <L 7 7 Y
¢ & \0/ SO .3%/ S .@f © \o/ @/
LA I S &
N S & & Qe;@ Qe?‘
K K o° o° & &
Topology

Figure 5.14: Proportion of updates lost due to cooldown across dynamic (top) and static

(bottom) workloads

168

There is a lot to unpack from these figures. We can see that many topologies lose a
large portion of data to cooldown. This confirms just how important a constraint con-
nection cooldown is for a browser context. We would like to note however that these
measurements do not paint the full picture and consistency metrics are much more im-
portant. For example, our system pre-connects peers to circumvent the cooldown penalty,
however this will only result in more updates being dropped as a peer attempts to send
it down a link that is not yet ready, while in actual fact we achieve higher consistency.
Nonetheless, this is important to consider because it tells us how susceptible a topology

is to the cooldown overhead and therefore churn.

Recall that the dynamic environment naturally has higher churn, however even in
the static environment, “intelligent” superpeer selection can result in high loss due to
switching superpeers too frequently. There are strategies to get around this, for example
by limiting the rate at which superpeers can change — the “superpeer churn” — but
this is outside of our scope. It goes to show that this class of topology needs much more

nuanced optimisations or else risk total loss, like under the dynamic workload.

Topologies with low rates of connection/disconnection, like naive superpeer topologies
and client-server architectures lose fewer updates to cooldown, regardless of motion. This
is the one advantage to having a topology that is independent of virtual position and
mobility, akin to strongly connected topologies such as Complete and Kiwano. Our
topologies on their own create many situations where links are not ready for sending,
but as we have shown, we overcome this entirely through pre-connecting peers, and as a
result, our system is only affected by churn caused by spawning/despawning as opposed

to motion.

169

Topology

0.15 AOI

- Ring
ClientServer

= Complete
Delaunay

- Kiwano

Qurs EmmK

(=
~

Qurs (minK
Ours (minK
Superpeers
= Superpeers
Superpeers
= SuperpeersK

=]
—_
o
DO = —

I 1 Goro=
N

WK
——

S50

BBl

Droppecgi (due to cooldown) ratio
o
(9]

0.00

/
B

0.00 0.25 0.50 0.75 .00
Churn

Figure 5.15: Mean ratio of updates dropped due to cooldown over the synthetic workload
for different levels of churn

Figure shows the effects of spawn/despawn churn as we attenuate it on top of
our high mobility churn synthetic workload span 0.6 for clarity in trend). In
this environment, connection changes due to churn caused by mobility dominate over
those caused by spawning/despawning. For the most part, we can see that the topologies
stack up against each other similar to under trace workloads. However, we can see
that overall, effects of spawn/despawn churn are limited until we reach a churn faster
than approximately seven minutes. Below that point, the number of packets lost due to

cooldown increases exponentially.

Besides the usual suspects that remain unaffected by churn due to their different
architecture, our approach is the least affected by churn, regardless of the level of con-
nectivity. This simply mirrors the trace workload results but under more controlled
conditions, proving our topology resilient to churn under a range of workloads with a lot

of variation.

In summary, we can see that building a system that is insensitive to topology churn
by design pays a lot of dividends in a deployment environment that severely penalises
topology churn (the browser). We have shown that we were able to mitigate the effects

of topology churn effectively, despite our topology being extremely sparse.

170

5.5 Evaluating packet loss resilience

As[P2P| networks can be significantly more unreliable than client-server networks, a com-
mon evaluation in literature (see §2.8.6)) is reliability. Similarly, we measure the effects of
a globally defined packet loss ratio for all inter-peer links. Recall that [UD]is in practice
over lossy/unreliable protocols like UDP, and retransmission is known to add no value
as these updates are short-lived — by the time they are retransmitted, they are already
irrelevant. Because of this, it is important to quantify the effects of packet loss on

performance metrics.

In this section we vary the loss ratio through which each link has a deterministically
random probability of dropping any given update. Lost updates means more inconsistent
information across peers, so in order to determine the effects of packet loss on perfor-
mance, we measure the mean drift distance as the loss ratio is increased, in order to

answer the question:

How resilient is our system’s performance to packet loss, compared
4 to others?

Other consistency metrics do not tell us anything here as they are unaffected by loss.
In our context, the signalling server is what tells players which peers to connect to. While
this is strongly dependent on the way topologies are computed, we are focusing specifically
on loss between peers. The connection to the signalling server is a reliable WebSocket
connection and the reliability of this connection is out of scope of our evaluation. We
therefore focus specifically on drift distance, and not missing/extra peers, as the latter is

unrelated to inter-peer packet loss.

We run this experiment using our synthetic workload (high churn) in order to focus
on the worst case effects. The loss ratio remains constant for an entire run, and we
repeat the whole experiment at different loss ratios from 0.0 (no loss) to 1.0 (total loss)
at 0.1 increments. The signalling server tells players peers’ initial spawn point, so these
measurements are on subsequent updates. Figure[5.16/shows how each topology performs

as we increase the loss ratio.

171

800-

Topology
/ AOI
- Ring
Client Server
- Complete
Delaunay
= Kiwano

Ours (min
QOurs (min
n

3
|

o—
—

K =

K =

Ours (minK =
Superpeers (n
= Superpeers (n
Superpeers

\/\/ = SuperpeersK g
—

0.00 0.25 0.50 0.75 1.00
Loss Ratio

~

IS

o

i
N

}

1

1
2
n
n

TN

3

Mean drift distance (in-game units)

200-

Figure 5.16: Mean drift distance under a range of artificially induced loss ratios

When interpreting these results, we must keep certain caveats in mind. The drift
distance for example is naturally bounded by the size of the environment. Similarly, it is
affected strongly by mobility. For example, in the case where all packets are lost, players
will have no conception of where their peers are beyond what the signalling server tells
them at the start. In this case, and divergence from the spawn point counts as drift, but
a player can linger close to that point, or leave and come back again. “A broken clock is

correct twice a day” as they say.

From figure |5.16] we make a number of important observations. The first is that,
while client-server and superpeer topologies can result in low drift overall (as we have
also seen in these are the most sensitive to loss, especially at the higher ratios. This
is expected, because normal nodes do not perform [ALM] for these, but instead unicast
to a supernode or server which then “amplifies” this update. If that update is dropped,

then nothing is forwarded.

Meanwhile, while densely connected topologies (Complete, Kiwano) can perform badly
over all due to updates not taking the most optimal routes (see , they are least af-
fected by loss due to the high redundancy and replication of updates. Since these topolo-
gies have relatively high drift regardless, they reach the natural upper bound so it seems

like they are less affected that they actually are.

Our topologies on the other hand perform well and are least affected by loss, even
when their connectivity parameter is set to the lowest values possible. This tells us that

the trade-off in sparseness is worthwhile, even in networks that may suffer from high loss.

172

Some topologies respond exceedingly unpredictably to packet loss, most notably the
ClientServer topology, despite the fact that these are means over a large number of
samples. With shorter paths especially, such as in the ClientServer case, there are fewer
opportunities for an update to be dropped. This creates a lot more extremes and there
are fewer peers in an update’s path that can be updated as it passes them. These
extremes create much more chaotic drift under a workload with turbulent motion, even
though both motion and loss are deterministic and repeated identically for every tested

loss ratio.

We opted not to include confidence ribbons around these means as they occlude
the lines and make the plot hard to read, however we would also like to note that the
topologies where the lines are less regular had a very large spread in drift distance (i.e.
some peers experienced high drift and others did not). This is expected for heterogeneous
network roles such as superpeer networks. While our experiments are deterministic and
repeated exactly the same way under each loss ratio, that tiny change can have significant
effects on the performance, as one flap of a butterfly’s wing can mean a different superpeer

gets selected.

This variance is also a major downside for game networks, where a superpeer may have
an unfair advantage by having less stale/inconsistent information, simply because they
have more connections. This is a problem that many implementations do not consider,
and the only way to solve this (all else being equal) is to artificially induce lag towards
superpeers or other topologically advantaged peers, which can create a myriad of other

complications. Our networks do not suffer from this problem.

5.6 Evaluating cheating mitigation

A common theme throughout this thesis has been the need to tackle the problem of bad
behaviour in a[P2P|[NVEs In §2.5.2] we clearly laid out the challenges that exist in a[P2P,

setting that do not exist in a traditional client-server setting. Then, throughout our work,

we further narrowed down exactly which constraints a system would need to meet in order
to effectively mitigate cheating. In this section, we aim to quantify cheater influence and
its effect on performance across topologies, and demonstrate how our system effectively

mitigates cheating.

173

5.6.1 The effectiveness of limiting cheater influence

At the topological layer, a system that effectively mitigates cheating should intuitively
cause cheating nodes to be less connected. Our system attempts to do this, while in-
troducing design features that flat out make certain kinds of cheating impossible. To

understand how well different approaches do this, we first ask:

pl How influential are cheaters in our system, versus others, at dif-

ferent proportions?

A important caveat to note before we address this question through experimental
evaluation is that our system prevents forwarding nodes from tampering with updates by
design (see . However, it is still important to avoid cheaters from being too connected
as they can affect the network in other ways, for example by intentionally dropping the

updates of other peers.

€ >
Low cheater High cheater
influence influence

Figure 5.17: Illustration of cheater peer (red) influence on the propagation of updates
from a source peer (blue) in networks across a spectrum from low to high cheater influence

Figure [5.17] depicts cheater influence in an abstract sense. On the right side of the
spectrum, we have have a network where updates sent from the blue peer have no choice
but to take a path through a cheating peer (red) to reach other peers. In the middle, we
have a network with alternate paths around the cheater, lowering their influence. In this
example, the topmost peer receives the same update via two different connections, the
redundancy of which allows them to negate the cheater’s influence even further. On the

far left, the topology makes the cheater a terminal node, minimising their influence.

174

To address the question of cheater influence, we measure the normalised betweenness
centrality [37], a standard and well-established node-wise metric based on the number of
shortest paths that pass through a node, widely used to measure node-wise influence in a
network. This is critical here because the non-shortest paths are not relevant — if a player
receives an update via a faster path, and the same update again via a slower one, the one
that came later is ignored anyway. The mean normalised cheater betweenness (MNCB)
is an average across all cheating players every time the signalling server recomputes the

topology.

sFVFEL Tt
g(v) — min(g)
normal(g(v max(g) — min(g) (5.1)
MNCB = T Z normal(g(c))
ceC

We express this metric more formally through equation . Here, the betweenness
centrality for node v is given by ¢(v). o is the total number of shortest paths from
node s to node ¢t and o4 (v) is the number of those paths that pass through v. As this
value scales with the number of nodes, it must be normalised to become independent
of size (g € [0,1]) as our networks have variable sizes. Finally, we sum the normalised
betweenness centrality across the subset of nodes that are marked as cheaters (denoted

by the set ') and divide this by the cardinality of that subset to get a mean.

In our evaluation setup, the (deterministic) probability of a node being a cheater
is controlled globally. We repeat the entire experiment (with both static and dynamic
trace workloads) under a range of cheater probabilities, from 0.0 (no cheaters) to 1.0
(all cheaters) in increments of 0.1. Players of course have no indication that a peer is
a cheater, however our evaluation framework does track how many times an update is
forwarded by a cheater, how many times a player accepts a “corrupted” update (one that
passed one or more cheaters on the way), as well as the corruption “magnitude” across

these accepted updates.

We must note that when comparing topologies here, it is not necessarily apples to
apples. First of all, not all systems support update forwarding. The Complete and AOI
topologies have no need for this as they aim to have updates delivered in a single “unicast”

hop. Equally, we assume that the server in the ClientServer architecture is secure and

®The notation here is based off of Wikipedia’s formalisation of betweenness centrality: https://en.
wikipedia.org/wiki/Betweenness_centrality

175

https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Betweenness_centrality

cannot be a “cheater”. Some topologies are also disconnected by design and do not
allow broadcasting to all peers, only trying to connect which already mitigates the
influence of cheaters at the cost of a feature. We stress that our system does not just
connect but all peers and allows broadcasting.

1.00;

0.75- Topology
AOI
- Ring
ClientServer
- Complete
Delaunay
0.50- - Kiwano °
Qurs (minK
= Qurs (minK
Ours (minK
Superpeers

/\/ - guperpeersli
| uperpeers
0.25 D - SugergeersKg

o
~

DO —
I 1 opo=
——

LN
——

S

=
BB

Mean normalised cheater betweenness

0.00;

0.00 0.25 0.75 1.00

050
Cheater probability
1.00-

0.75- Topology

AOI
- Ring
ClientServer
- Complete
Delaunay
0.50- - Kiwano °
Ours (minK
= Qurs (minK
Ours (minK
Superpeers
= Superpeers
Superpeers
= SuperpeersK

o
=

ro——
~

I oors
W
N’

o
[\
()]
N
B
BB

Mean normalised cheater betweenness

0.00+ /\ /

0.00 0.25 050 0.5 1.00
Cheater probability

Figure 5.18: Mean normalised cheater betweenness measures for different cheater proba-
bilities across the dynamic (top) and static (bottom) workloads

Secondly, cheaters can cheat at different “magnitudes”. For example, one cheater
may cheat by only occasionally slowing down forwarded updates slightly while another
may drop these outright in bursts. Since we are more interested in measuring different

topologies in relation to each other and the proportion of cheaters, we freeze this variable

176

and make it constant for all cheaters. Specifically, we make these “protocol-level” cheaters
(the most pertinent in this context; see §2.5.2)) and have all cheaters simply slow down all
updates they forward to effectively double the expected latency of link they are about to

forward it down, making cheaters “choke-points” in the network. We run this experiment

to understand the influence of these choke-points and plot the results in figure [5.18

Normally we would add 0.95 confidence ribbons to this plot, however the variance here can

be quite large, making the plots difficult to read, so we instead separated this information
out into tables (.2 and (.3l

Table 5.2: Table of standard deviations of mean normalised cheater betweenness measures
for every topology (rows) and cheater probability (columns) across the dynamic workload

Ours (minK =

Ours (minK =
Superpeers (n
n

SuperpeersK (n

Topology 0 0.1 02 03 04 05 06 07 08 09 1
AOI 0/0.231 0.203 0.195 0.195 0.154 0.138 0.115 0.084 0.081 0.084
Ring 0 0.214 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189
ClientServer 0 0 0 0 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 0 0
Delaunay 0.138 0.191 0.159 0.149 0.130 0.119 0.112 0.094 0.087 0.087
Kiwano

1)
Ours (minK = 2)
10

SuperpeersK (n =

0.181 0.170 0.150 0.133 0.106 0.082 0.076 0.067 0.060
0.182 0.184 0.156 0.138 0.133 0.126 0.099 0.095 0.092
0.138 0.125 0.139 0.137 0.139 0.146 0.155 0.149 0.148 0.154
0.123 0.179 0.165 0.145 0.135 0.124 0.119 0.093 0.073 0.064
0.131 0.184 0.169 0.148 0.140 0.131 0.121 0.123 0.095 0.081
0.077 0.070 0.078 0.070 0.062 0.059 0.061 0.048 0.049 0.048

OO OO OO OO OO

0.105 0.109 0.102 0.103 0.083 0.089 0.086 0.063 0.062 0.058

Table 5.3: Table of standard deviations of mean normalised cheater betweenness measures
for every topology (rows) and cheater probability (columns) across the static workload

Ours (minK =1
Ours (minK = 2
Ours (minK =1
Superpeers (n =
Superpeers (n =
SuperpeersK (n
SuperpeersK (n

Topology 0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1
AOI 010.174 0.136 0.135 0.100 0.096 0.083 0.065 0.063 0.063 0.063
Ring
ClientServer 0 0 0 0 0 0 0 0 0 0
Complete 0 0 0 0 0 0 0 0 0 0
Delaunay 0.178 0.150 0.146 0.179 0.171 0.174 0.116 0.116 0.117 0.115
Kiwano

~—

I oo

181 0.155 0.144 0.090 0.084 0.084 0.069 0.086 0.096 0.093
173 0.105 0.107 0.135 0.137 0.145 0.157 0.186 0.198 0.189
0 0 0 0 0 0.146 0.099 0.095 0.093
0 0 0 0 0 0.094 0.116 0.102 0.097
30 0.115 0.105 0.106 0.092 0.100 0.081 0.061 0.071 0.071
68 0.138 0.138 0.135 0.125 0.142 0.156 0.096 0.096 0.095

0
0
0
0
0—
0 0.190 0.183 0.126 0.122 0.120 0.081 0.064 0.030 0.080
0
0
0
0
0
0

0.
0.
0
0
0.
0.

— =

177

Here, the Complete and ClientServer topologies are of course entirely unaffected by
any amount of cheaters. The Complete topology because any peer can reach any other
peer in just one hop, and the ClientServer topology because all forwarding is done by the

server which cannot be a cheating player by definition (unlike in superpeer architectures).

We can also see that the patterns remain largely the same across area types (dynamic
and static). Indeed these are immune to changing the cheating “magnitude” per cheater.
The only major discrepancy are the naive superpeer topologies. This is because the point
at which cheaters have a large influence is largely down to luck — if a cheater is selected
as a superpeer (which is much more likely as there are more and more cheaters) this will
affect the topology much more significantly. Otherwise, they are essentially equivalent to

a multi-server client-server architecture.

Notice also that intelligent superpeer selection is more robust against cheaters. This is
because, like our method, network metrics are taken into account. The superpeer selection
is resource-based and cannot tell the difference between peers that drop or delay packets
intentionally versus peers with a genuinely bad connection. This makes it so that cheaters

are less likely to be selected as superpeers.

Our method’s resilience to cheaters is much more subtle on the other hand. One would
expect extremely sparse networks such as ours to be more susceptible to the influence
of bad actors than others, as sparsity is generally inversely proportional to both edge
and vertex connectivity. The reason this is not the case is twofold. First, our neighbour
selection by design deprioritises cheaters and bad connections (see . Second, we can
easily control the minimum connectivity of our networks, creating alternate “safe” paths
in the network using our minK parameter. If we set this to the maximum, our networks

would become completely connected and be entirely unaffected by protocol-layer cheating.

We can also see that one of Ring’s desirable properties (the high connectivity and
short diameters) makes it almost guaranteed that paths will cross cheaters after a certain
point. It is possible that if its hashing were location-based (i.e. players closer together in
the virtual space were also closer together on the ring) that this problem would be less

prominent.

The [AO]| topology is generally on par with our methods, however cannot be adjusted,
and this resilience comes at a cost to other performance metrics and features (such as
the ability to broadcast across all peers). It is essentially a lesser form of a Complete

topology so will naturally have similar properties.

Finally, we know that Kiwano networks, like Ring, tend to have very high connectivity,

however unlike a Complete topology, peers are not all necessarily a single hop away from

178

each other. This explains the MNBC rising to 0.3 (dynamic) and 0.37 (static) as for
Kiwano, as it can give cheating nodes a high level of influence, which becomes especially

dangerous when augmenting a system with some sort of peer voting mechanisms.

Thus, we have demonstrate that, despite sparsity, our system limits the influence that
cheaters can have. In addition to this, our system allows developers the versatility to
adjust the neighbour selection metric weights to prioritise cheater mitigation even further,
at the cost of other dimensions of performance, in an application that is particularly

susceptible to cheaters/cheating.

5.6.2 Cheater impact on performance

This previous results alone do not paint the full picture. We are interested in how cheating
affects in particular and must therefore consider metrics that tell us about user

experience.

p How does cheating affect the performance of our system, versus
4 others, at different proportions?

In order to answer this question, we once again make use of the consistency metrics
described in §5.2.5] This time, we consider the worst-case scenario. The ultimate goal

of networking [Virtual Environments (VEs)| is synchronising state across hosts, and in

the vast majority of cases, the state with the most volume and importance is avatar
position. Like in our evaluation on the effect of packet loss (§5.5) we do not care about

missing/extra peers in this context, for the same reasons.

Figure[5.19/shows the worst-case drift distance for different cheater probabilities across
the different workloads. By “worst-case” we specifically mean that if players were moving
at maximum speed in a straight line, the diameter (latency, not hops) of a computed
topology causes this level of drift distance. In order to have a fairer comparison, we
allow forwarding for all topologies, when in reality, the Complete and AOI topologies for
example would not have optimal routing, but rather only unicast to [AO]| peers one hop

away.

179

W
)
(@)

Topology

AOI
- Ring
Client Server
- Complete
Delaunay
= Kiwano
Ours (minK
= Qurs (minK

N
o
(e}

o—
N

Ours (minK
Superpeers
Superpeers
Superpeers

= SuperpeersK

[N
o
S
1
R~—~
S50
BE G
Ner'

TIPS
N

Worst — case drift distance (in-game units)
S

=)

0.00 0.25 0.75 1.00

0.50
Cheater probability

O8]
(e}
(@)

Worst — case drift distance (in-game units)
= S
o o
° \
1 1 1 1 1

Topology

AOI

- Ring

Client Server
Complete
Delaunay
Kiwano °
Ours (minK
Ours (minK
Ours (minK

Superpeers ‘g

S

Superpeers
Superpeers
Superpeersk E

=

0.00 0.25 0.75 1.00

0.50
Cheater probability

Figure 5.19: Worst case drift distances for different cheater probabilities across dynamic
(top) and static (bottom) workloads

We are not so interested in how these measurements compare across topologies overall
— for the most part, the patterns are as expected, where the topologies with higher
connectivity are have a lower drift. Rather we are interested in how the proportion
of cheaters affects these measurements. We are also interested in the spread of these

measurements, which we tabulate in tables [5.4] and [5.5] across trace workloads.

180

Table 5.4: Table of standard deviations of worst-case drift distances for every topology
(rows) and cheater probability (columns) across the dynamic workload

Topology 0O 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
AOI 48.9 59.1 58.9 64.3 65.5 73.4 77.1

Ring 9.50 17.9 17.6 18.2 18.0 22.0 22.8 23.6 19.60 22.70 28.60
ClientServer 10.2 24.6 22.4 23.3 24.6 29.7 29.7 27.5 31.20 30.80 30.70
Complete 7.90 11.7 11.3 14.1 13.8 18.3 18.3 17.5 14.30 13.20 23.80
Delaunay 19.8 20.0 28.4 30.0 31.8 37.3 37.7 49.5 43.60 55.80 59.30
Kiwano 8.00 8.20 11.9 16.0 17.3 19.4 21.6 19.3 15.50 14.80 24.00

Ours (minK = 1) 40.4 38.7 29.3 29.8 30.0 30.5 34.7 42.5 50.30 51.50 58.20
Ours (minK = 2) 25.8 26.0 21.9 23.4 22.7 25.6 29.4 32.6 40.00 41.90 43.30
Ours (minK = 10 10.3 13.0 12.5 14.7 14.8 18.7 18.8 18.0 23.40 22.30 30.70
Superpeers (n = 2) 9.20 21.0 20.9 32.2 32.3 40.9 40.8 34.2 26.00 26.40 27.50
Superpeers (n = 3) |17.3 24.7 23.2 25.5 24.0 33.6 33.4 35.3 54.50 52.30 51.80
SuperpeersK (n = 2)23.2 48.2 57.4 58.5 60.9 61.2 61.0 68.9 68.70 70.20 69.50
SuperpeersK (n = 3)23.6 35.9 42.1 60.8 68.7 70.3 72.3 71.3 66.50 68.40 70.80

~—

I o ro

Table 5.5: Table of standard deviations of worst-case drift distances for every topology
(rows) and cheater probability (columns) across the static workload

Topology 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1
AQOI 25.8 26.6 26.7 26.9 28.1 28.7 29.3 41.5 47.6 65.7 77.50
Ring 11.6 11.6 12.2 13.2 16.1 18.8 21.9 24.3 24.5 29.5 34.70
ClientServer 22.6 36.3 37.1 39.3 38.0 45.7 53.8 86.3 70.5 70.5 67.90
Complete 9.80 9.80 10.5 10.5 10.5 11.9 12.9 19.7 19.3 19.7 29.30
Delaunay 18.8 19.2 194 22.4 26.7 32.4 39.6 47.9 45.8 49.7 56.50
Kiwano 9.80 9.80 10.5 10.5 10.5 12.2 13.2 20.1 19.4 19.8 29.30

Ours (minK = 1) [24.2 23.4 24.3 23.6 23.6 24.2 24.2 33.5 38.1 44.9 58.30
Ours (minK = 10) [10.2 10.6 11.2 11.3 11.2 12.6 13.4 20.6 19.6 26.1 29.90
Ours (minK = 2) [21.1 20.9 21.1 22.2 22.7 23.4 24.4 32.4 33.3 42.1 52.20
Superpeers (n = 2) [30.2 31.1 31.1 39.3 38.6 46.5 48.2 971 82.1 92.2/ 90.50
Superpeers (n = 3) |34.5 39.5 39.7 41.2 39.9 40.1 49.1 87.0 88.4 88.8/103.5
SuperpeersK (n = 2)/22.8 42.1 52.4 51.5 56.7 67.9 72.7 70.3 66.7 69.9 68.50
SuperpeersK (n = 3)22.5 32.3 35.4 35.4 45.6 49.3 57.9 67.7 65.4 67.5 67.40

From the figures, we can see that across workloads, superpeer topologies are the ones
made worse from the very first cheater, as well as the ones that are most volatile when
cheaters are in the majority. This is largely due to the heterogeneity in connectivity across
the network for these topologies. Especially later, when cheaters are in the majority, it
is much more likely for a superpeer to become a cheater, after which all bets are off, and

these topologies take a significant hit.

181

The ID-based superpeer selection performs significantly worse than the k-means super-
peer selection here as the latter — like our system — takes account of network conditions,
which does not differentiate between protocol-layer cheaters and peers with a legitimately
bad internet connection. This makes it less likely that cheaters are selected as superpeers,
and if they are, the diameter of the resulting topologies is still smaller that it would be
for ID-based superpeer selection. The client-server architecture behaves similarly, but is
much better as the server cannot be a cheater. We must also acknowledge that, in the
past, superpeer architectures have incorporated reputation metrics into the superpeer
selection decision, thereby lowering the likelihood that a superpeer cheats. If the Super-
peers topology did the same here, then we would not see same stark increase in drift as

cheaters overwhelm the network, and the line would instead be closer to SuperpeersK.

The AOI topology (with forwarding enabled) appears to perform well here, but the
standard deviation tables show us that this is somewhat misleading. Under the dynamic
workload, this topology becomes incredibly unpredictable as we increase the cheater
probability. This is similar under the static workload, except that it is exceeded by the
naive superpeer topologies, which suffer more here due to the fact that the lower churn

can have the topology stuck in a suboptimal state (e.g. cheater superpeers) for longer.

The densely connected networks (Kiwano, Ring) approach our lower bound (Complete
with forwarding enabled) roughly in order of connectivity as expected. It is not surprising

that alternate pair-wise routes strongly mitigate the effects of cheaters.

What is surprising at first glance however, is that our topologies with min K values of
1 and 2 go from performing worse than Delaunay, to better than Delaunay, as the number
of cheaters increase. This is an important result, because it takes connectivity out of the
equation (Delaunay is more connected) and if we were to consider only virtual position,
then our topologies (specifically minK = 1) are subgraphs of Delaunay. This means
that the higher performance of our topology can be directly attributed to our
neighbour selection metrics. This effect is much more pronounced when cheaters

cheat more severely, for example by delaying or dropping packets even more.

We only see the roles reversed back to what they were when we reach 100% cheaters,
because our neighbour selection metrics can no longer avoid cheaters. Even in this case,
the versatility of our system shines — by setting the minK parameter higher (e.g. for
a game where you really want to guarantee no protocol-level cheating whatsoever) our
topology slowly becomes more connected and we can see its drift gets very close to our
lower bound (Complete). This makes our system truly a Swiss army knife of cross-genre

game networking.

182

5.7 Summary

In §5.1.1] we put forward a number of evaluation questions that we answered in this
chapter. These evaluated our system from four angles: scalability, churn sensitivity, loss
resilience, and cheating mitigation. From these, we generated a series of seven more
specific questions that we address individually throughout this chapter, after outlining

our setup and methodology. These were:
1. How does our system scale with number of peers, compared to others?
2. How does per-peer connection count scale for each topology as peer count increases?
3. How are upload/download rates affected as peer count increases?
4. How sensitive is our system to peer/connection churn, compared to others?
5. How resilient is our system’s performance to packet loss, compared to others?
6. How influential are cheaters in our system, versus others, at different proportions?
7. How does cheating affect the performance of our system, versus others, at different

proportions?

The answers to these questions are summarised through table at the beginning
of this chapter, contrasting our system with comparable alternatives. We highlight how
our system is clearly the most versatile and well performing under these criteria. Since
we have linked these criteria to the use case of [P2P] networks for browser-based [NVE
[UD)] it follows that our system is best suited to this context as it strikes a balance across

workloads and performance metrics.

183

Chapter 6

Conclusion

At the start of this thesis, we set out to build a system that enables|Peer-to-peer (P2P)|

update dissemination in a way that can be tuned to different [Networked Virtual

[Environment (NVE)|use cases, and that can be used under the constraints of a web

browser context. We decomposed that goal into three parts that roughly correspond

to one chapter each, after our background chapter.

1. To capture[NVE] browser, and network requirements for [P2P|Update Dissemination]

(UD)| systems

2. To design and implement a [P2P|[UD] system that meets these requirements

3. To evaluate our implementation and demonstrate that it does indeed meet these

requirements with respect to alternative solutions

Each chapter was then dedicated to systematically proving that these goals were met.
In this final chapter, we summarise how, discuss the future of this work, and conclude

this thesis.

6.1 Thesis summary

In §2] we explored and reviewed high-level concepts and literature pertinent to the research
areas of this PhD project. We began by looking at the history of decentralisation, the
virtue of separating the control and data planes, and the browser as a platform, in order to
set the scene. Then, we outlined the challenges of NVES, and the research that is done in

this area, to frame our context. We examined more detailed underlay and overlay network

184

research — including presenting our taxonomy of existing overlay network topologies —
such that our contributions can be positioned in this bigger picture of related work. We
ended this chapter with a thorough survey of evaluation metrics and a discussion of

evaluation workloads, to justify our later evaluation setup and methodology.

After reviewing and surveying the literature in §2|, we proceeded to meet the first goal
through deep measurements and analysis of a dataset we built in §3] In this chapter,
we focused on capturing constraints and requirements. To do this, we built a large
dataset from an existing [NVE] using bots and crawlers that we developed and released.
We similarly made an anonymised version of this dataset publicly available. Then we
captured [NVE] requirements through targeted measurements over this and other collected
data. Along the way, we also found and disclosed high-risk vulnerabilities in the NVE] we
analysed, which were subsequently patched by the developers. We also ran a number of

experiments and analyses to capture browser and network requirements.

We then tackled the second objective in We described the design and imple-
mentation of our system, as well as the libraries and APIs we released, driven by the
requirements and constraints of the previous chapter. We also implemented a range of
alternative solutions, next to our own, that can be used in said library. We did this not
just so that developers who use this library can have more options, but in order to be able
to compare our system to others from the literature, all else being equal. We began by
outlining and justifying our high-level approach, then described the system architecture

and algorithms in detail.

Finally, we bet the third and final objective in §5] We developed a rich evaluation
framework for systems for with options for evaluating under browser
constraints, which we released on GitHub for other researchers to test their systems
under. Then we used our framework to evaluate our system on in its own right, as well as
with respect to alternate solutions. We described the evaluation of our system in depth,
with respect to different workloads, parameters, and existing solutions, in order to meet

specific research goals.

This lead us to verify that our system did indeed solve the problems we sought out to
solve, to an extent that met our constraints/requirements, and also surpassed alternate
solutions. Further, we have shown that our system is versatile enough that it can be
configured to match a wide range of use cases, rather than be overly specialised for a
single one, making it generalisable without the concessions of trade-offs. We truly believe
that the contributions in technology as well as research and development resources that

we have made in the course of this PhD will have a profound and long-lived impact on
the field.

185

6.2 Future work

At the time of writing this, the COVID-19 pandemic is sweeping the globe and the future
is uncertain. We are seeing a spike in reliance on video conferencing, collaborative edit-
ing, streaming, and online games. We have seen platforms like Zoom suffer outages and
reliability issues amid this deluge of demand. Ironically, Zoom has previously dismissed
P2P| as not scalable |143|. Similarly, Microsoft centralised the Skype protocol in 2012,
which used a superpeer architecture, citing performance, scalability, and availability ben-
efits [50]. In 2013, it turned out that the real motivation reason could have been the
NSA’s PRISM surveillance programme [41, |52].

All this is to say that real-time [P2P| and therefore our systems, have increasingly
viable horizontal applications. Our prototype web apps that we described in are an
example of this. Indeed, many of these use cases can be browser-based, as for example

video transcoding has become practical in the browser.

In the gaming space, online games have seen a large COVID influx now too, Manyland
included. Steam sales are through the roof as people who have never played video games
before are exploring the hobby while self-isolating. This makes our solution even more
desirable to tackle scalability, performance, and fault-tolerance. |UD| is not the only
requirement in [NVEg that benefits from distribution. As we touched on earlier, persistent
storage (both static assets and player-generated content) is another such high-potential
area. Existing distributed storage solutions are general-purpose, for example IPFS [5],
and could benefit from context/use case awareness and application-layer metrics the same
way that our system has. Different vertical approaches like this would enable us to
offer complete game networking solutions that decentralises/distributes as much as can

be (and makes sense to) distribute.

The dataset we built and present in also opens a number of different research
avenue’s. Besides looking at mobility through a behavioural / game design lens,
this data can be used for social networks analysis, natural language processing (through
chat logs), and developing game Al. Solving network problems in only one of many

problems that can be tackled and solved through further deep analysis of our dataset.

Furthermore, we hope that our browser library and signalling server API sees mass
adoption, for example through the rising .io game trend. These often “fake” multiplayer
using bots because real multiplayer is expensive and complex to develop [103]. This would
enable us to tackle a range of even more difficult research questions, for example finding
out which and what proportion of peers are unable to form connections and fall back

to using TURN servers due to NAT traversal issues. This, and other usage data would

186

allow us to build even better systems, as well as flood the research community with even
more large, rich analytics and datasets. We hope that this thesis is just the beginning
in a greater endeavour to level the developer playing field and catalyse the creation of

better applications.

187

Bibliography

[10]

Nils Aschenbruck et al. “BonnMotion: a mobility scenario generation and analysis
tool”. In: Proceedings of the 3rd international ICST conference on simulation tools
and techniques. ICST (Institute for Computer Sciences, Social-Informatics and .. .
2010, p. 51.

Franz Aurenhammer. “Voronoi diagrams—a survey of a fundamental geometric

data structure”. In: ACM Computing Surveys (CSUR) 23.3 (1991), pp. 345-405.

Helge Backhaus, Stephan Krause, et al. “QuON: a quad-tree-based overlay pro-
tocol for distributed virtual worlds”. In: International Journal of Advanced Media
and Communication 4.2 (2010), p. 126.

Ricky A Bangun, Eryk Dutkiewicz, and Gary J Anido. “An analysis of multi-
player network games traffic”. In: 1999 IEEE Third Workshop on Multimedia
Signal Processing (Cat. No. 99THS8451). IEEE. 1999, pp. 3-8.

Juan Benet. “Ipfs-content addressed, versioned, p2p file system”. In: arXiv preprint
arXiv:1407.3561 (2014).

Steve Benford and Lennart Fahlén. “A spatial model of interaction in large virtual
environments”. In: Proceedings of the Third European Conference on Computer-
Supported Cooperative Work 15-17 September 1993, Milan, Italy ECSCW’93.
Springer. 1993, pp. 109-124.

Carlos Eduardo Bezerra, Fabio R Cecin, and Claudio FR Geyer. “A3: A novel
interest management algorithm for distributed simulations of mmogs”. In: Pro-
ceedings of the 2008 12th IEEE/ACM International Symposium on Distributed

Sitmulation and Real-Time Applications. IEEE Computer Society. 2008, pp. 35—
42.

Carlos Eduardo Benevides Bezerra, Joao Luiz Dihl Comba, and Claudio Fernando
Resin Geyer. “A fine granularity load balancing technique for MMOG servers using
a kd-tree to partition the space”. In: 2009 VIII Brazilian Symposium on Games
and Digital Entertainment. IEEE. 2009, pp. 17-26.

Ashwin Bharambe et al. “Donnybrook: enabling large-scale, high-speed, peer-to-
peer games”. In: ACM SIGCOMM Computer Communication Review 38.4 (2008),
pp- 389-400.

Ashwin R Bharambe, Jeffrey Pang, and Srinivasan Seshan. “Colyseus: A Dis-
tributed Architecture for Online Multiplayer Games.” In: NSDI. Vol. 6. 2006,
pp. 12-12.

188

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In:
Journal of statistical mechanics: theory and experiment 2008.10 (2008), P10008.

Zack Bloom. Serverless Performance: Cloudflare Workers, Lambda and Lambda@FEdge.
2018. URL: https://blog.cloudflare.com/serverless—-performance-comparison-
workers-lambda/| (visited on 07/21/2019).

Jean-Sébastien Boulanger, J ""org Kienzle, and Clark Verbrugge. “Comparing inter-
est management algorithms for massively multiplayer games”. In: Proceedings of
oth ACM SIGCOMM workshop on Network and system support for games. ACM.
2006, p. 6.

Eliya Buyukkaya and Maha Abdallah. “Efficient triangulation for p2p networked
virtual environments”. In: Multimedia Tools and Applications 45.1-3 (2009), pp. 291—
312.

Eliya Buyukkaya, Maha Abdallah, and Romain Cavagna. “VoroGame: a hybrid
P2P architecture for massively multiplayer games”. In: 2009 6th IEEE Consumer
Communications and Networking Conference. leee. 2009, pp. 1-5.

Jean de Campredon et al. “Hybridearth: Social mixed reality at planet scale”. In:
2014 IEEFE 11th Consumer Communications and Networking Conference (CCNC).
IEEE. 2014, pp. 1138-1139.

Emanuele Carlini, Massimo Coppola, and Laura Ricci. “Integration of P2P and
clouds to support massively multiuser virtual environments”. In: 2010 9th Annual
Workshop on Network and Systems Support for Games. IEEE. 2010, pp. 1-6.

Miguel Castro et al. “SCRIBE: A large-scale and decentralized application-level
multicast infrastructure”. In: IEEE Journal on Selected Areas in communications
20.8 (2002), pp. 1489-1499.

Miguel Castro et al. “Secure routing for structured peer-to-peer overlay networks”.
In: ACM SIGOPS Operating Systems Review 36.S1 (2002), pp. 299-314.

Romain Cavagna, Christian Bouville, and Jerome Royan. “P2P network for very
large virtual environment”. In: Proceedings of the ACM symposium on Virtual
reality software and technology. ACM. 2006, pp. 269-276.

Kuan-Ta Chen et al. “Game traffic analysis: An MMORPG perspective”. In: Pro-
ceedings of the international workshop on Network and operating systems support
for digital audio and video. ACM. 2005, pp. 19-24.

Yang Chen et al. “Pharos: accurate and decentralised network coordinate system”.
In: IET communications 3.4 (2009), pp. 539-548.

Yang Chen et al. “Phoenix: Towards an accurate, practical and decentralized net-
work coordinate system”. In: International Conference on Research in Networking.
Springer. 2009, pp. 313-325.

Alice Cheng and Eric Friedman. “Sybilproof reputation mechanisms”. In: Proceed-
ings of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems.
ACM. 2005, pp. 128-132.

T Matthew Ciolek and Adam Kendon. “Environment and the spatial arrangement
of conversational encounters”. In: Sociological Inquiry 50.3-4 (1980), pp. 237-271.

189

https://blog.cloudflare.com/serverless-performance-comparison-workers-lambda/
https://blog.cloudflare.com/serverless-performance-comparison-workers-lambda/

Mark Claypool and Kajal Claypool. “On latency and player actions in online
games”. In: (2006).

Trevor F Cox and Michael AA Cox. Multidimensional scaling. Chapman and hal-
1/CRC, 2000.

Frank Dabek et al. “Vivaldi: A decentralized network coordinate system”. In: ACM
SIGCOMM Computer Communication Review. Vol. 34. 4. ACM. 2004, pp. 15-26.

Frank Dabek et al. “Wide-area cooperative storage with CFS”. In: ACM SIGOPS
Operating Systems Review. Vol. 35. 5. ACM. 2001, pp. 202-215.

George Danezis et al. “Sybil-resistant DHT routing”. In: Furopean Symposium On
Research In Computer Security. Springer. 2005, pp. 305-318.

Alan Demers et al. “Epidemic algorithms for replicated database maintenance”.
In: Proceedings of the sixth annual ACM Symposium on Principles of distributed
computing. 1987, pp. 1-12.

Raluca Diaconu and Joaquin Keller. “Kiwano: A scalable distributed infrastruc-

ture for virtual worlds”. In: 2013 International Conference on High Performance
Computing & Simulation (HPCS). IEEE. 2013, pp. 664-667.

Christophe Diot and Laurent Gautier. “A distributed architecture for multiplayer
interactive applications on the Internet”. In: IEEFE network 13.4 (1999), pp. 6-15.

Benoit Donnet, Bamba Gueye, and Mohamed Ali Kaafar. “A survey on network
coordinates systems, design, and security”. In: IEEE Communications Surveys &
Tutorials 12.4 (2010), pp. 488-503.

John R Douceur. “The sybil attack”. In: International workshop on peer-to-peer
systems. Springer. 2002, pp. 251-260.

Wu-chang Feng et al. “A traffic characterization of popular on-line games”. In:
IEEE/ACM Transactions on Networking (TON) 13.3 (2005), pp. 488-500.

Linton C Freeman. “A set of measures of centrality based on betweenness”. In:
Sociometry (1977), pp. 35-41.

Davide Frey et al. “Solipsis: A decentralized architecture for virtual environments”.
In: 1st International Workshop on Massively Multiuser Virtual Environments.
2008.

Mark Frohnmayer and Tim Gift. “The TRIBES engine networking model”. In:
Proceedings of the Game Developers Conference. 2000.

Thomas MJ Fruchterman and Edward M Reingold. “Graph drawing by force-
directed placement”. In: Software: Practice and experience 21.11 (1991), pp. 1129-
1164.

Ryan Gallagher. Newly Revealed PRISM Snooping Makes Verizon Surveillance
Look Like Kids’ Stuff. 2013. URL: https://slate.com/technology/2013/06/
nsa-prism-surveillance-private—-data-from-google—-microsoft-skype-
apple-yahoo-snooped-by-government.html (visited on 03/20/2020).

Game Developers Conference (GDC). State of the Game Industry 2017. Tech. rep.
2017.

190

https://slate.com/technology/2013/06/nsa-prism-surveillance-private-data-from-google-microsoft-skype-apple-yahoo-snooped-by-government.html
https://slate.com/technology/2013/06/nsa-prism-surveillance-private-data-from-google-microsoft-skype-apple-yahoo-snooped-by-government.html
https://slate.com/technology/2013/06/nsa-prism-surveillance-private-data-from-google-microsoft-skype-apple-yahoo-snooped-by-government.html

[43]

[44]

[45]

[47]

[48]

[49]

[50]

[53]

[54]

[55]

[56]

Game Developers Conference (GDC). State of the Game Industry 2018. Tech. rep.
2018.

Paul Gardner, Margo Seltzer, et al. “Network Coordinates in the Wild”. In: jth
{USENIX} Symposium on Networked Systems Design & Implementation ({ NSDI}
07). 2007

Chris GauthierDickey, Virginia Lo, and Daniel Zappala. “Using n-trees for scal-
able event ordering in peer-to-peer games”. In: Proceedings of the international

workshop on Network and operating systems support for digital audio and video.
ACM. 2005, pp. 87-92.

Chris GauthierDickey, Daniel Zappala, and Virginia Lo. “Event Ordering and Con-
gestion Control for Distributed Multiplayer Games”. In: article), May 14 (2005),
p- 10.

Chris GauthierDickey et al. “Low latency and cheat-proof event ordering for peer-
to-peer games”. In: Proceedings of the 14th international workshop on Network and
operating systems support for digital audio and video. ACM. 2004, pp. 134-139.

Luca Genovali and Laura Ricci. “Voronoi models for distributed virtual environ-
ments”. In: Proceedings of the 2008 ACM CoNEXT Conference. ACM. 2008, p. 43.

John S Gilmore and Herman A Engelbrecht. “A survey of state persistency in peer-
to-peer massively multiplayer online games”. In: IEEFE Transactions on Parallel
and Distributed Systems 23.5 (2011), pp. 818-834.

Dan Goodin. Skype replaces P2P supernodes with Linuz boxes hosted by Microsofft.
2012. URL: https : //arstechnica . com/ information - technology /2012 /
05 / skype - replaces - p2p - supernodes - with - 1inux - boxes - hosted - by -
microsoft/ (visited on 03/20/2020).

Chris Greenhalgh and Steve Benford. “MASSIVE: a distributed virtual reality
system incorporating spatial trading”. In: Proceedings of 15th International Con-
ference on Distributed Computing Systems. IEEE. 1995, pp. 27-34.

Glenn Greenwald. NSA Prism program taps in to user data of Apple, Google and
others. 2013. URL: https://www.theguardian. com/world/2013/jun/06/us-
tech-giants-nsa-data (visited on 03/20/2020).

lan J Grimstead, Nick J Avis, and David W Walker. “RAVE: Resource-Aware
Visualization Environment”. In: (2006).

lan J Grimstead, Nick J Avis, and David W Walker. “RAVE: the resource-aware
visualization environment”. In: Concurrency and Computation: Practice and Ex-
perience 21.4 (2009), pp. 415-448.

Krishna P Gummadi, Stefan Saroiu, and Steven D Gribble. “King: Estimating
latency between arbitrary internet end hosts”. In: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment. ACM. 2002, pp. 5-18.

Hakim Hacid et al. “Enhancing navigation in virtual worlds through social net-
works analysis”. In: International Symposium on Methodologies for Intelligent Sys-
tems. Springer. 2011, pp. 146-152.

191

https://arstechnica.com/information-technology/2012/05/skype-replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/
https://arstechnica.com/information-technology/2012/05/skype-replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/
https://arstechnica.com/information-technology/2012/05/skype-replaces-p2p-supernodes-with-linux-boxes-hosted-by-microsoft/
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data

[61]

[62]

[63]

[64]

[65]

Thorsten Hampel, Thomas Bopp, and Robert Hinn. “A peer-to-peer architecture
for massive multiplayer online games”. In: Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games. ACM. 2006, p. 48.

Tom Hardin. 2018 Digital Trend: Microservices. 2018. URL: https : //blog .
g2crowd . com/blog/trends/digital -platforms/2018-dp/microservices/
(visited on 05/14,/2019).

Scott Hendrickson et al. “Serverless computation with openlambda”. In: 8th { USENIX}

Workshop on Hot Topics in Cloud Computing (HotCloud 16). 2016.

Shun-Yun Hu, Shao-Chen Chang, and Jehn-Ruey Jiang. “Voronoi state manage-
ment for peer-to-peer massively multiplayer online games”. In: 2008 5th IEEE
Consumer Communications and Networking Conference. IEEE. 2008, pp. 1134—
1138.

Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. “VON: a scalable peer-to-peer
network for virtual environments”. In: IEEE Network 20.4 (2006), pp. 22-31.

Shun-Yun Hu and Guan-Ming Liao. “Scalable peer-to-peer networked virtual en-
vironment”. In: Proceedings of 3rd ACM SIGCOMM workshop on Network and
system support for games. ACM. 2004, pp. 129-133.

Shun-Yun Hu et al. “A spatial publish subscribe overlay for massively multiuser
virtual environments”. In: 2010 International Conference on Electronics and In-
formation Engineering. Vol. 2. IEEE. 2010, pp. V2-314.

Guan-Yu Huang, Shun-Yun Hu, and Jehn-Ruey Jiang. “Scalable reputation man-
agement with trustworthy user selection for P2P MMOGs”. In: International Jour-
nal of Advanced Media and Communication 2.4 (2008), pp. 380—401.

Takuji limura, Hiroaki Hazeyama, and Youki Kadobayashi. “Zoned federation of
game servers: a peer-to-peer approach to scalable multi-player online games”. In:
Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for
games. ACM. 2004, pp. 116-120.

Laura Itzel et al. “Specifying consistency requirements for massively multi-user
virtual environments”. In: 2011 IEEE International Workshop on Haptic Audio
Visual Environments and Games. IEEE. 2011, pp. 1-2.

Laura Itzel et al. “The quest for meaningful mobility in massively multi-user vir-
tual environments”. In: Proceedings of the 10th Annual Workshop on Network and
Systems Support for Games. IEEE Press. 2011, p. 15.

Josh James. Data Never Sleeps 2.0. 2014. URL: https://www.domo . com/blog/
2014/04/data-never-sleeps-2-0/ (visited on 03/09/2016).

Jared Jardine and Daniel Zappala. “A hybrid architecture for massively multi-
player online games”. In: Proceedings of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games. ACM. 2008, pp. 60—65.

Jehn-Ruey Jiang, Yu-Li Huang, and Shun-Yun Hu. “Scalable AOI-cast for peer-to-
peer networked virtual environments”. In: 2008 The 28th International Conference
on Distributed Computing Systems Workshops. IEEE. 2008, pp. 447-452.

192

https://blog.g2crowd.com/blog/trends/digital-platforms/2018-dp/microservices/
https://blog.g2crowd.com/blog/trends/digital-platforms/2018-dp/microservices/
https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/
https://www.domo.com/blog/2014/04/data-never-sleeps-2-0/

[77]

[78]

[79]

David B Johnson and David A Maltz. “Dynamic source routing in ad hoc wireless
networks”. In: Mobile computing. Springer, 1996, pp. 153-181.

State of JS. The State of JavaScript 2018: Front-end Frameworks - Overview.
2019. URL: https://2018.stateofjs.com/front-end-frameworks/overview/
(visited on 07/20,/2019).

Jonathan Jungck. Mobile Gaming: The Fake Multiplayer Epidemic. 2018. URL:
https://www.linkedin . com/pulse/mobile - gaming - fake -multiplayer -
epidemic-jonathan-jungck/ (visited on 10/18/2020).

Kleomenis Katevas et al. “Detecting group formations using iBeacon technology”.
In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct. ACM. 2016, pp. 742-752.

Leo Katz. “A new status index derived from sociometric analysis”. In: Psychome-
trika 18.1 (1953), pp. 39-43.

Hanna Kavalionak et al. “Integrating peer-to-peer and cloud computing for mas-
sively multiuser online games”. In: Peer-to-Peer Networking and Applications 8.2
(2015), pp. 301-319.

Yoshihiro Kawahara, Tomonori Aoyama, and Hiroyuki Morikawa. “A peer-to-
peer message exchange scheme for large-scale networked virtual environments”.
In: Telecommunication Systems 25.3-4 (2004), pp. 353-370.

Joaquin Keller and Raluca Diaconu. “OneSim: Scaling Second Life with Kiwano”.
In: MMVE. 2014, pp. 1-2.

Joaquin Keller and Mathilde Laurent. “Divereal: a social virtual world without
rooms”. In: Proceedings of the 15th Annual Workshop on Network and Systems
Support for Games. IEEE Press. 2017, pp. 46-48.

Joaquin Keller and Gwendal Simon. “Toward a peer-to-peer shared virtual re-
ality”. In: Proceedings 22nd International Conference on Distributed Computing
Systems Workshops. IEEE. 2002, pp. 695-700.

Adam Kendon. “13 The negotiation of context in face-to-face interaction”. In:
Rethinking context: Language as an interactive phenomenon 11 (1992), p. 323.

Adam Kendon. Conducting interaction: Patterns of behavior in focused encoun-

ters. Vol. 7. CUP Archive, 1990.

Alan Kenny, Séamus Mcloone, and Tomas Ward. “Controlling entity state updates
to maintain remote consistency within a distributed interactive application”. In:
ACM Transactions on Internet Technology (TOIT) 9.4 (2009), p. 15.

Kyoung-chul Kim, Ikjun Yeom, and Joonwon Lee. “Hyms: A hybrid mmog server
architecture”. In: IEICE transactions on information and systems 87.12 (2004),
pp. 2706-2713.

Bjorn Knutsson et al. “Peer-to-peer support for massively multiplayer games”. In:
IEEE INFOCOM 2004. Vol. 1. IEEE. 2004.

kovarex. Friday Facts #147 - Multiplayer rewrite. 2016. URL: https : //www .
factorio.com/blog/post/fff-147 (visited on 10/10/2019).

193

https://2018.stateofjs.com/front-end-frameworks/overview/
https://www.linkedin.com/pulse/mobile-gaming-fake-multiplayer-epidemic-jonathan-jungck/
https://www.linkedin.com/pulse/mobile-gaming-fake-multiplayer-epidemic-jonathan-jungck/
https://www.factorio.com/blog/post/fff-147
https://www.factorio.com/blog/post/fff-147

[100]

Santosh Kulkarni. “Badumna network suite: A decentralized network engine for
massively multiplayer online applications”. In: 2009 IEEE Ninth International
Conference on Peer-to-Peer Computing. IEEE. 2009, pp. 178-183.

Chi-Anh La and Pietro Michiardi. “Characterizing user mobility in second life”. In:
Proceedings of the first workshop on Online social networks. ACM. 2008, pp. 79—
84.

Renaud Lambiotte, J-C Delvenne, and Mauricio Barahona. “Laplacian dynamics
and multiscale modular structure in networks”. In: arXwv preprint arXiw:0812.1770

(2008).

Youngki Lee et al. “Measurement and estimation of network QoS among peer Xbox
360 game players”. In: International Conference on Passive and Active Network
Measurement. Springer. 2008, pp. 41-50.

Sergey Legtchenko, Sébastien Monnet, and Ga’el Thomas. “Blue Banana: re-
silience to avatar mobility in distributed MMOGs”. In: 2010 IEEE/IFIP In-
ternational Conference on Dependable Systems & Networks (DSN). IEEE. 2010,
pp. 171-180.

Chris Lesniewski-Laas. “A Sybil-proof one-hop DHT”. In: Proceedings of the 1st
workshop on Social network systems. ACM. 2008, pp. 19-24.

Huiguang Liang et al. “Avatar mobility in user-created networked virtual worlds:
measurements, analysis, and implications”. In: Multimedia Tools and Applications
45.1-3 (2009), pp. 163-190.

Harsha V Madhyastha et al. “iPlane: An information plane for distributed ser-
vices”. In: Proceedings of the Tth symposium on Operating systems design and
implementation. USENIX Association. 2006, pp. 367-380.

Sergio Marti, Prasanna Ganesan, and Hector Garcia-Molina. “DHT routing using
social links”. In: International Workshop on Peer-to-Peer Systems. Springer. 2004,
pp. 100-111.

Shawn Martin et al. “OpenOrd: an open-source toolbox for large graph layout”. In:
Visualization and Data Analysis 2011. Vol. 7868. International Society for Optics
and Photonics. 2011, p. 786806.

Matheus28. WebRTC: the future of web games — Hacker News. 2016. URL: https:
//news.ycombinator.com/item?id=13264952 (visited on 10/10/2019).

Nobutaka Matsumoto et al. “A scalable and low delay communication scheme for
networked virtual environments”. In: IEFEE Global Telecommunications Confer-
ence Workshops, 2004. GlobeCom Workshops 2004. IEEE. 2004, pp. 529-535.

Petar Maymounkov and David Mazieres. “Kademlia: A peer-to-peer information
system based on the xor metric”. In: International Workshop on Peer-to-Peer
Systems. Springer. 2002, pp. 53-65.

Peyton Maynard-Koran. Fixzing the Internet for Real Time Applications: Part I.
2015. URL: https://technology.riotgames . com/news/fixing- internet -
real-time-applications-part-i (visited on 07/18/2019).

194

https://news.ycombinator.com/item?id=13264952
https://news.ycombinator.com/item?id=13264952
https://technology.riotgames.com/news/fixing-internet-real-time-applications-part-i
https://technology.riotgames.com/news/fixing-internet-real-time-applications-part-i

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108

[109]

[110]
[111]

[112]

[113]

[114]

[115]

Peyton Maynard-Koran. Fizing the Internet for Real Time Applications: Part II.
2016. URL: https://technology.riotgames . com/news/fixing- internet -
real-time-applications-part-ii (visited on 07/18/2019).

Peyton Maynard-Koran. Fizing the Internet for Real Time Applications: Part II1.
2016. URL: https://technology.riotgames . com/news/fixing- internet -
real-time-applications-part-iii (visited on 07/18/2019).

Miziziziz. .io Games and The Rise of Fake Multiplayer. 2020. URL: https://www.
youtube . com/watch?v=YCqnD40Q5T8 (visited on 03/19/2020).

Alberto Montresor and Mark Jelasity. “PeerSim: A scalable P2P simulator”. In:
2009 IEEE Ninth International Conference on Peer-to-Peer Computing. IEEE.
2009, pp. 99-100.

Katherine L. Morse et al. Interest management in large-scale distributed simula-
tions. Information and Computer Science, University of California, Irvine, 1996.

TS Ng and Hui Zhang. “Towards global network positioning”. In: Proceedings
of the 1st ACM SIGCOMM Workshop on Internet Measurement. Citeseer. 2001,
pp. 25-29.

Jauvane C De Oliveira and Nicolas D Georganas. “VELVET: An adaptive hybrid
architecture for very large virtual environments”. In: Presence: Teleoperators €
Virtual Environments 12.6 (2003), pp. 555-580.

Jeremy Peel. Gabe takes to Reddit to clear up Valve Anti-Cheat rumours. 2011.
URL: https://www . pcgamesn . com/ counterstrike / gabe - takes - reddit -

clear-valve—-anti-cheat-rumours-do-we-send-your-browsing—-history-
valve-no (visited on 11/02/2019).

Bogdan Popescu. “Safe and private data sharing with turtle: friends team-up and
beat the system (transcript of discussion)”. In: International Workshop on Security
Protocols. Springer. 2004, pp. 221-230.

Ananth Rao et al. “Load balancing in structured p2p systems”. In: International
Workshop on Peer-to-Peer Systems. Springer. 2003, pp. 68—79.

Sylvia Ratnasamy et al. A scalable content-addressable network. Vol. 31. 4. ACM,
2001.

Laura Ricci et al. “Aoi-cast by compass routing in delaunay based dve overlays”.
In: 2011 International Conference on High Performance Computing & Simulation.
IEEE. 2011, pp. 135-142.

Andrea W Richa, M Mitzenmacher, and R Sitaraman. “The power of two random
choices: A survey of techniques and results”. In: Combinatorial Optimization 9
(2001), pp. 255-304.

Bj"’.orn Richerzhagen et al. “Bypassing the cloud: Peer-assisted event dissemination
for augmented reality games”. In: 14-th IEEFE International Conference on Peer-
to-Peer Computing. IEEE. 2014, pp. 1-10.

Sean Rooney, Daniel Bauer, and Rudy Deydier. “A federated peer-to-peer network
game architecture”. In: IEEE Communications Magazine 42.5 (2004), pp. 114-122.

195

https://technology.riotgames.com/news/fixing-internet-real-time-applications-part-ii
https://technology.riotgames.com/news/fixing-internet-real-time-applications-part-ii
https://technology.riotgames.com/news/fixing-internet-real-time-applications-part-iii
https://technology.riotgames.com/news/fixing-internet-real-time-applications-part-iii
https://www.youtube.com/watch?v=YCqnD40Q5T8
https://www.youtube.com/watch?v=YCqnD40Q5T8
https://www.pcgamesn.com/counterstrike/gabe-takes-reddit-clear-valve-anti-cheat-rumours-do-we-send-your-browsing-history-valve-no
https://www.pcgamesn.com/counterstrike/gabe-takes-reddit-clear-valve-anti-cheat-rumours-do-we-send-your-browsing-history-valve-no
https://www.pcgamesn.com/counterstrike/gabe-takes-reddit-clear-valve-anti-cheat-rumours-do-we-send-your-browsing-history-valve-no

[116] Antony Rowstron and Peter Druschel. “Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems”. In: IFIP/ACM Inter-
national Conference on Distributed Systems Platforms and Open Distributed Pro-
cessing. Springer. 2001, pp. 329-350.

[117] Gregor Schiele et al. “Requirements of peer-to-peer-based massively multiplayer
online gaming”. In: Seventh IEEFE International Symposium on Cluster Computing
and the Grid (CCGrid’07). IEEE. 2007, pp. 773-782.

[118] Arne Schmieg et al. “pSense-Maintaining a dynamic localized peer-to-peer struc-
ture for position based multicast in games”. In: 2008 Fighth International Con-
ference on Peer-to-Peer Computing. IEEE. 2008, pp. 247-256.

[119] Marc Shapiro et al. “Conflict-free replicated data types”. In: Symposium on Self-
Stabilizing Systems. Springer. 2011, pp. 386—400.

[120] Atul Singh et al. “Eclipse attacks on overlay networks: Threats and defenses”. In:
In IEEE INFOCOM. Citeseer. 2006.

[121] StatCounter Global Stats. Browser market share. 2019. URL: https://netmarketshare.
com/browser-market-share.aspx (visited on 07/20/2019).

[122] StatCounter Global Stats. Browser Market Share Worldwide. 2019. URL: http:
//gs.statcounter.com/browser-market-share#monthly-201811-201811-bar
(visited on 07/20,/2019).

[123] StatCounter Global Stats. Desktop vs Mobile vs Tablet Market Share Worldwide.
2019. URL: http://gs.statcounter.com/platform-market-share/desktop-
mobile-tablet/| (visited on 07/20/2019).

[124] Ion Stoica et al. “Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations”. In: IEEE/ACM Transactions on Networking (TON) 11.1 (2003), pp. 17—
32.

[125] Ivan Stojmenovic. “Position-based routing in ad hoc networks”. In: IEEE commu-
nications magazine 40.7 (2002), pp. 128-134.

[126] Swee Ann Tan, William Lau, and Allan Loh. “Networked game mobility model
for first-person-shooter games”. In: Proceedings of 4th ACM SIGCOMM workshop
on Network and system support for games. ACM. 2005, pp. 1-9.

[127] Vinod Tandon and Jake Devore. Detecting lag switch cheating in game. US Patent
App. 15/585,111. Oct. 2017.

[128] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal
on computing 1.2 (1972), pp. 146-160.

[129] Tonio Triebel et al. “Peer-to-peer infrastructures for games”. In: Proceedings of
the 18th International Workshop on Network and Operating Systems Support for
Digital Audio and Video. ACM. 2008, pp. 123-124.

[130] Mathieu Valero, Raluca Diaconu, and Joaquin Keller. “Manycraft: Massively dis-
tributed minecraft”. In: 2013 12th Annual Workshop on Network and Systems
Support for Games (NetGames). IEEE. 2013, pp. 1-3.

196

https://netmarketshare.com/browser-market-share.aspx
https://netmarketshare.com/browser-market-share.aspx
http://gs.statcounter.com/browser-market-share#monthly-201811-201811-bar
http://gs.statcounter.com/browser-market-share#monthly-201811-201811-bar
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

[131]

[132]

[133]
[134]

[135]

[136]

[137]

138

[139]

[140]

[141]

[142]

[143]

Matteo Varvello, Ernst Biersack, and Christophe Diot. “A networked virtual en-
vironment over KAD”. In: Proceedings of the 2007 ACM CoNEXT conference.
ACM. 2007, p. 66.

Matteo Varvello et al. “Distributed avatar management for second life”. In: Pro-
ceedings of the 8th Annual Workshop on Network and Systems Support for Games.
IEEE Press. 2009, p. 5.

Matteo Varvello et al. “Is there life in Second Life?” In: Proceedings of the 2008
ACM CoNEXT Conference. ACM. 2008, p. 1.

Voodoo. Bots - Hole.io FAQ). 2020. URL: https://hole-io.com/faq/bots.php
(visited on 10/18,/2020).

W3Techs. Usage of server-side programming languages for websites. 2019. URL:
https://w3techs.com/technologies/overview/programming_language/all
(visited on 06/19/2019).

Yichuan Wang et al. “Network traces of virtual worlds: Measurements and ap-
plications”. In: Proceedings of the second annual ACM conference on Multimedia
systems. ACM. 2011, pp. 105-110.

Amir Yahyavi and Bettina Kemme. “Peer-to-peer architectures for massively mul-
tiplayer online games: A survey”. In: ACM Computing Surveys (CSUR) 46.1
(2013), p. 9.

B Beverly Yang and Hector Garcia-Molina. “Designing a super-peer network”.
In: Proceedings 19th International Conference on Data Engineering (Cat. No.
03CH37405). IEEE. 2003, pp. 49-60.

Anthony Peiqun Yu and Son T Vuong. “MOPAR: a mobile peer-to-peer over-
lay architecture for interest management of massively multiplayer online games”.
In: Proceedings of the international workshop on Network and operating systems
support for digital audio and video. Acm. 2005, pp. 99-104.

Ben Y Zhao et al. “Tapestry: A resilient global-scale overlay for service deploy-
ment”. In: IEEE Journal on selected areas in communications 22.1 (2004), pp. 41—

53.

Jin Zhou et al. “A low-latency peer-to-peer approach for massively multiplayer
games”. In: International Workshop on Agents and P2P Computing. Springer.
2005, pp. 120-131.

Xinyu Zhuang et al. “Player dynamics in massively multiplayer online games”. In:
(2007).

Zoom. Cloud-Based and Peer-to-Peer Meetings. 2014. URL: https://blog.zoom.
us/wordpress/2014/10/09/cloud-based-and-peer-peer-meetings/| (visited
on 03/20,/2020).

197

https://hole-io.com/faq/bots.php
https://w3techs.com/technologies/overview/programming_language/all
https://blog.zoom.us/wordpress/2014/10/09/cloud-based-and-peer-peer-meetings/
https://blog.zoom.us/wordpress/2014/10/09/cloud-based-and-peer-peer-meetings/

Glossary

AFK Away From Keyboard.
ALM Application-Layer Multicast. 109 115}, [116] [163] [164], [172]

AOI Area-of-Interest. [ixHx [I7, [20} A0
64} [72 [77, [78, 89, [TOSHLIO, [IT3] [114] [T16] [TT8] 124} [125] [128] [131] [L35HI37] [145]
[L50HT59, [T6T), [T63H167, 173} 176, [I78} [I79]

AR Augmented Reality. [24] [34]
AWS Amazon Web Services. 12

&
[@
£
S
E
5
&

CDN Content Delivery Network.

CRDT Conflict-free Replicated Data Type.
CRUD Create, Read, Update, and Delete.
CSP Content Security Policy.

CSR Client-Side Rendering. [9)

DHT Distributed Hash Table. [3| [0 [10] 20} 22} 27}, 9] [30]

EMST Euclidean Minimum Spanning Tree. [126

FPS First-Person Shooter. [4] [15] (47, B2 [66], 133,
ICE Interactive Connectivity Establishment.

IM Interest Management. [17] 18], 27} [B1], [46}, (A7} [55] 119} [156]
IoT Internet of Things. [T} [L1,
IRC Internet Relay Chat.

LOD Level of Detail. 26
LOESS locally estimated scatterplot smoothing. 55| B8] [81], [160]

198

MANET Mobile Ad hoc Network.

MMOG Massively Multiplayer Online Game. [17] 22] 23] [36], [43] (5]
56} [68} [69} (133}, [140}, [156]

MMORPG Massively Multiplayer Online Role-Playing Game.
MOBA Multiplayer Online Battle Arena.
MST Minimum Spanning Tree. [126] [I63]

NAT Network Address Translation. [106]

NCS Network Coordinate System. 25 32] 34} [L19]
NLOD Network Level of Detail.

NVE Networked Virtual Environment. [10} 39], 4446 52} [60] [64]
(72, B3] [88] [108], [L09, [11] [TT2} [130] [133] 135, [141] [T42} [I51], [I56} [159, [163] [I7T} [I73]
[L79} (183} {186

OM Object Management. [21] BT,

P2P Peer-to-peer. 7@7’ 7 7 7 29, @_@
B4, 64} [68] [691 [72, B3], [85] (8789} 02} [T00}, [10T], [T03] [T04}, [T07HI09} [TTTHITL] [[25HT27,
(130} [133} [135], [136} [138} [142] [150} [152] [L56} [I59} [16T], 163}, [[7T} [173] 183136

PoP Point of Presence. [xi] [147]
PvP player versus player.

PWA Progressive Web App. [9

QoS Quality of Service.

REST Representational State Transfer. [11] [12] [15]
RPG Role-Playing Game.

RTP Real-time Transport Protocol.

RTS Real-Time Strategy. [L7] [19]

RTT Round-Trip Time. [42]

RWP Random Waypoint Model.

SAN Storage Area Network.
SDN Software-Defined Networking.
SDP Session Description Protocol.

199

SPA Single-Page Application. [9]

UD Update Dissemination. [[21] 31], [44] [88,
[136] 142} [I59, 17T} I83HIBG

UX User Experience. [40]

VE Virtual Environment. [1§] [34], [40}, [41], [47]
[L19} 122} [I79]

VPS Virtual Private Server. [12

VR Virtual Reality.

XSS Cross-Site Scripting. @, @

200

	Introduction
	Motivation
	Research context
	Research objectives
	Research contributions
	Thesis structure

	Background
	Overview
	Centralisation vs decentralisation
	The separation of the control and data planes
	The web browser as a platform
	Peer-to-peer vs client-server

	The NVE context
	Acronyms and definitions
	The challenge of preventing cheating in NVEs
	Other NVE challenges
	NVE avatar motion mobility traces and their uses

	The underlying network
	Application-layer multicast
	Network coordinate systems
	Network level of detail

	Overlay networks
	A taxonomy of existing topologies
	Neighbour selection metrics
	Routing over P2P NVEs

	Evaluation metrics
	Consistency / Staleness
	Bandwidth
	Upload/download per node
	Protocol Quality
	Delay
	Reliability
	Drift distance

	Evaluation workloads
	Simulation testbeds
	Mobility workloads

	Characterising Networked Virtual Environments
	Overview
	Measurement objectives

	Existing datasets
	Our dataset
	Overview of Manyland
	Data collection

	Areas and workloads
	Measuring AOI density
	AOI density due to player activity
	Hotspots

	Measuring topology churn
	Session length
	Idle behaviour
	Motion flow
	Crowd behaviour

	Measuring cheating behaviour
	Measuring player reputation
	Vote-based rank
	Social network metrics

	Measuring device heterogeneity
	Measuring browser constraints
	Summary

	P2P Update Dissemination
	Overview
	Decentralisation: to what extent?
	Architecture
	Routing within our system
	Our algorithm
	Distance metrics used
	Building an appropriate coordinate system
	Computing topologies

	Pre-connection outside of AOI
	Mitigating cheating
	Implementation
	Signalling server
	Supported topologies
	Client library

	Evaluation
	Overview
	Evaluation questions

	Setup and methodology
	Our testbed
	Modelling communication between nodes
	Topologies evaluated
	Workloads evaluated
	Performance metrics used

	Evaluating scalability
	Performance against AOI density
	Meeting browser constraints

	Evaluating churn sensitivity
	Evaluating packet loss resilience
	Evaluating cheating mitigation
	The effectiveness of limiting cheater influence
	Cheater impact on performance

	Summary

	Conclusion
	Thesis summary
	Future work

